
Question Paper

Q5. In a collinear collision, a particle with an initial speed v_0 strikes a stationary particle of the same mass. If the final total kinetic energy is 50% greater than the original kinetic energy, the magnitude of the relative velocity between the two particles, after the collision, is

(1) $\frac{v_0}{\sqrt{2}}$	(2)	$\frac{v_0}{4}$
$(3) \sqrt{2} v_0$	(4)	$\frac{v_0}{2}$

JEE Main Previous Year Paper MathonGo

Question Paper	MathonG
Q6. It is found that if a neutron suffers an elastic colli	near collision with a deuterium at rest, the fractional loss of its
energy is $P_{\rm d}$, while for its similar collision with a	carbon nucleus at rest, the fractional loss of energy is $P_{\rm c}$. The
values of $P_{\rm d}$ and $P_{\rm c}$ are respectively. (1) 0, 1	(2) 0. 89, 0. 28 (2) 0. 89, 0. 28
(3) 0. 28, 0. 89 mathema // mathema	go (4) 0, 0 athongo /// mathongo /// mathongo
	⁷ kg. If 10^{23} hydrogen molecules strike, per second, a fixed ormal, and rebound elastically with a speed of 10^3 m s ⁻¹ , then
(1) $4.70 imes 10^2$ N m ⁻² athongo /// mathor	$(2)~2.35 imes 10^3~{ m N~m^{-2}}$ mathematical $\prime\prime\prime$ mathematical
(3) 4.70×10^3 N m ⁻²	(4) $2.35 imes 10^2 \ { m M m^{-2}}$
-	ass M and radius R are welded symmetrically as shown. The xis normal to the plane and passing through the point P is:
mathongo mathongo mathon	igo ///. mathongo ///. mathongo ///. mathongo
m the go mathongo // mathor	
-	$(2) \frac{19}{2} MR^2$ ongo /// mathongo /// mathongo
$(3) \frac{55}{2}MR^2$	(4) $\frac{73}{2}MR^2$
	s 9 M, a small disc of radius $\frac{R}{3}$ is removed as shown in the
figure. The moment of inertia of the remaining di passing through centre of disc is:	sc about an axis perpendicular to the plane of the disc and
$\frac{2R}{3}$ mathongo $\frac{2}{2R}$ mathongo	
//. mathong //. mathongo //. mathor	
(1) $\frac{37}{9}MR^2$	(2) $4MR^2$
(3) $\frac{40}{9}MR^2$ mathematical mathematica	$(4) 10 MR^2$ ongo $///$ mathongo $///$ mathongo
Q10. A particle is moving with a uniform speed in a c proportional to the n^{th} power of R. If the period	ircular orbit of radius R in a central force inversely of rotation of the particle is T, then:
$\begin{array}{c} (1) \ T \propto R^{n/2} \\ (3) \ T \propto R^{\frac{n}{2}+1} \end{array}$	(2) $T \propto D^{3/2}$ for any n

Q11. A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of area *a* floats on the surface of the liquid, covering entire cross-section of

Question Paper

cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the thore of the piston to compress the liquid. fractional decrement in the radius of the sphere $\left(\frac{dr}{r}\right)$, is: mathongo (2) $\frac{Ka}{mg}$ athongo (4) $\frac{mg}{3Ka}$ mathongo (4) mathongo (4) (1) $\frac{mg}{Ka}$ (3) $\frac{Ka}{3ma}$ Q12. Two moles of an ideal monoatomic gas occupies a volume V at $27^{\circ}C$. The gas expands adiabatically to a volume 2V. Calculate (a) the final temperature of the gas and (b) change in its internal energy. (2) (a)189 K (b)2.7 kJ (1) (a)195 K (b)2.7 kJ (4) (a)189 K (b) - 2.7 kJ (3) (a)195 K (b) -2.7 kJ Q13. A silver atom in a solid oscillates in simple harmonic motion in some direction with a frequency of 10^{12} s⁻¹. What is the force constant of the bonds connecting one atom with the other? (Mole wt. of silver, $= 108 ext{ g mol}^{-1}$ and Avogadro number $= 6.02 imes 10^{23}$) $(2) 6.4 \text{ N m}^{-1}$ $(4) 2.2 \text{ N m}^{-1}$ (1) 5.5 N m^{-1} (3) 7.1 N m⁻¹ Q14. A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is 2.7×10^3 kg m⁻³ and its Young's modulus is 9.27×10^{10} Pa. What will be the fundamental frequency of the longitudinal vibrations? (1) 7.5 kHz (2) 5 kHz (4) 10 kHz (3) 2.5 kHz Q15. Three concentric metal shells A, B and C of respective radii a, b and c (a < b < c) have surface charge densities $+\sigma$, $-\sigma$ and $+\sigma$ respectively. The potential of shell B is: $g = 10^{-10}$ mothongo $(1) \frac{\sigma}{\varepsilon_0} \left[\frac{b^2 - c^2}{c} + a \right]$ $(2) \frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{a} + c \right]$ $(3) \frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{b} + c \right]$ $(4) \frac{\sigma}{\varepsilon_0} \left[\frac{b^2 - c^2}{b} + a \right]$ $(5) \frac{\sigma}{c} \left[\frac{b^2 - c^2}{c} + a \right]$ Q16. A parallel plate capacitor of capacitance 90 pF is connected to a battery of EMF 20 V. If a dielectric material of dielectric constant $K = \frac{5}{3}$ is inserted between the plates, the magnitude of the induced charge will be: / mathongo /// mathongo (2) 1.2 nCiongo / (1) 0.9 nC(3) 0.3 nC(4) 2.4 nC Q17. Two batteries with e.m.f. 12 V and 13 V are connected in parallel across a load resistor of 10 Ω . The internal resistance of the two batteries are 1 Ω and 2 Ω respectively. The voltage across the load lies between, (1) 11.7 V and 11.8 V 10000 // motheney (2) 11.6 V and 11.7 V motheney // (3) 11.5 V and 11.6 V (4) 11.4 V and 11.5 V Q18. On interchanging the resistances, the balance point of a meter bridge shifts to the left by 10 cm. The resistance of their series combination is $1 \ k\Omega$. How much was the resistance on the left slot before interchanging the resistances? (1) 910 Ω (2) 990 Ω (3) 505 Ω (4) 550 Ω

Question Paper

Q19. In a potentiometer experiment, it is found that no current passes through the galvanometer when the terminals of the cell are connected across 52 cm of the potentiometer wire. If the cell is shunted by a resistance of 5 Ω , a balance is found when the cell is connected across 40 cm of the wire. Find the internal resistance of the cell. (1) 2.5Ω $(2) 1 \Omega$ mathongo /// mathongo (4) 2Ω athongo /// mathongo /// mathongo (3) 1.5Ω Q20. The dipole moment of a circular loop carrying a current I, is m and the magnetic field at the centre of the loop is B_1 . When the dipole moment is doubled by keeping the current constant, the magnetic field at the centre of the loop is B_2 . The ratio $\frac{B_1}{B_2}$ is: ///. mathongo ///. mathongo (2) 2 mathongo ///. mathongo ///. mathongo $(1) \frac{1}{\sqrt{2}}$ (4) $\sqrt{2}$ (3) $\sqrt{3}$ Q21. An electron, a proton and an alpha particle having the same kinetic energy are moving in circular orbits of radii r_e , r_p , r_α respectively in a uniform magnetic field B. The relation between r_e , r_p , r_α is: (1) $r_e < r_\alpha < r_p$ $(2) r_e > r_P = r_\alpha$ (3) $r_e < r_p = r_\alpha$ (4) $r_e < r_p < r_\alpha$ Q22. For an RLC circuit driven with voltage of amplitude v_m and frequency $\omega_0 = \frac{1}{\sqrt{LC}}$ the current exhibits resonance. The quality factor, Q is given by once (1) $\frac{CR}{\omega_0}$ (2) $\frac{\omega_0 L}{R}$ (3) $\frac{\omega_0 R}{L}$ (2) $\frac{\omega_0 L}{R}$ (4) $\frac{R}{(\omega_0 C)}$ hongo /// mathongo /// mathongo Q23. In an A.C. circuit, the instantaneous e.m.f. and current are given by, $E = 100 \sin 30t$, $I = 20 \sin \left(30t - \frac{\pi}{4} \right)$. In one cycle of A.C., the average power consumed by the circuit (in watt) and the watt-less current (in ampere) are, respectively: (1) 50, 0 (2) 50, 10 (3) $\frac{1000}{\sqrt{2}}$, 10 (4) $\frac{50}{\sqrt{2}}$, 0 **Q24.** An EM wave from air enters a medium. The electric fields are $\vec{E}_1 = E_{01} \hat{x} \cos \left[2\pi v \left(\frac{z}{c} - t \right) \right]$ in air and $E_2 = E_{02} \hat{x} \cos[k(2z - ct)]$ in medium, where the wave number k and frequency v refer to their values in the air. The medium is non-magnetic. If ϵ_{r_1} and ϵ_{r_2} refer to relative permittivities of air and medium respectively, which of the following options, is correct? (1) $\frac{\epsilon_{r_1}}{\epsilon_{r_2}} = \frac{1}{2}$ (3) $\frac{\epsilon_{r_1}}{\epsilon_{r_2}} = 2$ (2) $\frac{\epsilon_{r_1}}{\epsilon_{r_2}} = 4$ (4) $\frac{\epsilon_{r_1}}{\epsilon_{r_2}} = \frac{1}{4}$ Q25. Unpolarized light of intensity I passes through an ideal polariser A. Another identical polariser B is placed behind A. The intensity of light beyond B is found to be $\frac{I}{2}$. Now another identical polariser C is placed between A and B. The intensity beyond B is now found to be $\frac{I}{8}$. The angle between polariser A and C is $(1) 60^{\circ}$ (2) 0 $(3) 30^{\circ}$ $(4) 45^{\circ}$

Q26. The angular width of the central maximum in a single slit diffraction pattern is 60° . The width of the slit is 1 μ m. The slit is illuminated by monochromatic plane waves. If another slit of the same width is made near it,

JEE Main 2018 (08 Apr)	JEE Main Previous Year Paper
Question Paper	MathonGo
Young's fringes can be observed on a screen placed	at a distance 50 cm from the slits. If the observed fringe
width is 1 cm, what is slit separation distance? (i.e.	, the distance between the centres of each slit.)
/// n(1) 100 μm /// mathongo /// mathongo	(2) 25 µm _{hongo} /// mathongo /// mathongo
(3) 50 µm	(4) 75 μm
Q27. An electron from various excited states of hydroger	atom emit radiation to come to the ground state. Let
$\lambda_n, \ \lambda_g$ be the de Broglie wavelength of the electron	in the n^{th} state and the ground state respectively. Let \wedge_n
be the wavelength of the emitted photon in the trans	sition from the n^{th} state to the ground state. For large n, (A,

$(1)\wedge_n^2pprox\lambda$ mathematic		(2) $\wedge_n pprox A + rac{B}{\lambda_n^2}$		
$(3) \wedge_n \approx A + B \lambda_n$		(4) $\wedge_n^2 pprox A + B\lambda_n^2$		
Q28. If the series limit frequency of the	ne Lyman series is V	V_L , then the series lim	it frequency of the	Pfund series is:
$\begin{array}{c} (1) \ \frac{V_L}{25} \\ (3) \ 16 \ V_L \end{array}$		(2) $25 V_L$ (4) $\frac{V_L}{16}$		
Q29. The reading of the ammeter for a	a silicon diode in th	e given circuit is:		
200Ω				
mathongo /// mathongo				
///. matheng				
/// n(1) 13 .5 mA// mathongo		(2) 0 mathongo		
(3) 15 mA		(4) 11 .5 mA		
Q30 A talonhonia communication corr		///. mathongo	10 CHz Orly 10%	fit is utilized

Q3	0. A telephonic	communication ser	vice is working at a	a carrier frequency of	10 GHz. Only 10%	of it is utilized
for transmission. How many telephonic channels can be transmitted simultaneously if each channel requires a						
	bandwidth o	f 5 kHz? thonco				
	$(1)~2 imes 10^6$			(2) $2 imes 10^3$		
	(3) $2 imes 10^4$			(4) 2×10^5		

Q31. The ratio of mass percent of C and H of an organic compound $(C_XH_YO_Z)$ is 6:1. If one molecule of the above compound $(C_XH_YO_Z)$ contains half as much oxygen as required to burn one molecule of compound C. H. was a burner of the above compound of the second seco

$C_X H_Y$ comp	letely to CO_2 and H	$_2$ O. The empirical	formula of the compo	ound $C_X H_Y O_Z$ is		
(1) $C_2H_4O_3$			(2) $C_3 H_6 O_3$			
$(3) \mathrm{C}_{2}\mathrm{H}_{4}\mathrm{O}$			(4) $C_3H_4O_2$			
232. According to	molecular orbital th	neory, which of the	following molecule v	will not be available?	?	
(1) H_2^{2-}			(2) He_{2}^{2+}			
(3) ${\rm He}_{2}^{+}$			(4) ${ m H}_2^-$			

Q33. Which of the following compounds contain(s) no covalent bond(s)?

 $KCl, \ PH_3, \ O_2, \ B_2H_6, \ H_2\,SO_4$

Q

B are constants)

Question Paper

JEE Main Previous Year Paper MathonGo

(1) KCl, B_2H_6 mathenge (3) KCl, H_2SO_4	 (2) KCl, B₂H₆, PH₃ mathongo /// mathongo (4) KCl
Q34. Total number of lone pair of electrons in I_3^- ion is:	///. mathongo ///. mathongo ///. mathongo
$(1) 12$ $(3) 6 \text{ mathenge} \qquad /// \qquad \text{mathenge} \qquad /// \qquad \text{mathenge}$	(2) 3 (4) 9 mathongo /// mathongo

Q35. The combustion of benzene (l) gives $CO_2(g)$ and $H_2O(l)$. Given that heat of combustion of benzene at constant volume is -3263 .9 kJ mol⁻¹ at 25°C; the heat of combustion (in kJ mol⁻¹) of benzene at

constant pressure will be $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$ (1) -3267.6

(3) - 452.46

Q36. Which of the following lines correctly show the temperature dependence of equilibrium constant K, for an exothermic reaction?

(2) 4152.6 (4) 3260

///. mathéngo		
$(0,0) \xrightarrow{B} \frac{1}{T(K)}$		
///. mathongo		
(1) A & D	(2) A & B	
(2) \mathbf{P} $\ell_{\mathbf{r}}$ C	(4) C & D	

Q37. An aqueous solution contains 0. 10 M H₂S and 0. 20 M HCl. If the equilibrium constant for the formation of HS⁻ from H₂S is 1.0×10^{-7} and that of S²⁻ from HS⁻ ions is 1.2×10^{-13} , then, the concentration of S²⁻ ions in the aqueous solution is:

$(1)~5 imes 10^{-19}$		(2) 5×10^{-8}		
$(3)~3 imes 10^{-20}$		(4) $6 imes 10^{-21}$		

Q38. An aqueous solution contains an unknown concentration of Ba^{2+} . When 50 mL of a 1 M solution of $Na_2 SO_4$ is added, $BaSO_4$ just begins to precipitate. The final volume is 500 mL. The solubility product of

$BaSO_4$ is 1×10^{-10} . What is the	e original concentrat	tion of Ba ²⁺ ?ongo				
(1) 1 .0 $ imes 10^{-10} { m M}$		(2) $5 imes 10^{-9} { m M}$				
$(3) \ 2 imes 10^{-9} \mathrm{M}$ mathematic		(4) 1 .1 ×10 ⁻⁹ M				
9. Which of the following are Lew	is acids?					
(1) BCl_3 and $AlCl_3$		(2) PH_3 and BCl_3				
(3) AlCl ₃ and CCl_4		(4) PH_3 and CCl_4				
5	(1) $1.0 \times 10^{-10} M$ (3) $2 \times 10^{-9} M$ 39. Which of the following are Lew (1) BCl ₃ and AlCl ₃	(1) $1.0 \times 10^{-10} M$ (3) $2 \times 10^{-9} M$ 39. Which of the following are Lewis acids? (1) BCl ₃ and AlCl ₃	(3) 2×10^{-9} M (4) 1.1×10^{-9} M (5) Which of the following are Lewis acids? (1) BCl ₃ and AlCl ₃ (2) PH ₃ and BCl ₃	(1) $1 \cdot 0 \times 10^{-10}$ M (2) 5×10^{-9} M (3) 2×10^{-9} M (4) $1 \cdot 1 \times 10^{-9}$ M (5) Which of the following are Lewis acids? (1) BCl ₃ and AlCl ₃ (2) PH ₃ and BCl ₃	(1) $1 \cdot 0 \times 10^{-10}$ M (2) 5×10^{-9} M (3) 2×10^{-9} M (4) $1 \cdot 1 \times 10^{-9}$ M (5) Which of the following are Lewis acids? (1) BCl ₃ and AlCl ₃ (2) PH ₃ and BCl ₃	(1) $1 \cdot 0 \times 10^{-10}$ M (2) 5×10^{-9} M (3) 2×10^{-9} M (4) $1 \cdot 1 \times 10^{-9}$ M (5) Which of the following are Lewis acids? (1) BCl ₃ and AlCl ₃ (2) PH ₃ and BCl ₃

Q40. Which of the following salts is the most basic in aqueous solution?

Question Paper

JEE Main Previous Year Paper MathonGo

(1) $Pb(CH_3 COO)_2$ thougo (3) $CH_3 COOK$ mathematical cook	 (2) Al (CN)₃ngo /// mathongo /// mathongo (4) FeCl₃
Strong Strong Pink to colourless	 as an indicator, which of the following is a correct (2) Base Acid End point Weak Srtong Colourless to pink (4) Base Acid End point Weak Strong Yellow to pinkish red
	an oxide which is used in chromatography as an mathongo mathongo mathongo mathongo
	(2) Zn (4) Alhathongo /// mathongo /// mathongo
Q44. Which of the following compounds will be suitable for $N_2^+Cl^-$ (1) $N_2^+Cl^-$ (3) NH_2 methods of MH_2	(4) NO ₂ Mathongo 7/ mathongo
Q45. The trans-alkenes are formed by the reduction of alky (1) $Sn - HCl$ (3) $NaBH_4$	
Q46. The recommended concentration of fluoride ion in dr make teeth enamel harder by converting $[3 \text{ Ca}_3 (\text{PO}_4$	
(1) $[3 \operatorname{Ca} (\operatorname{OH})_2, \operatorname{CaF}_2]$ methongo (3) $[3(\operatorname{CaF}_2), \operatorname{Ca} (\operatorname{OH})_2]$	(2) $[CaF_2]$ more an anthony and the set of the set o
Q47. Which type of 'defect' has the presence of cations in t (1) Metal deficiency defect (3) Vacancy defect	he interstitial sites? mathongo mathongo (2) Schottky defect (4) Frenkel defect

Q48. For 1 molal aqueous solution of the following compounds, which one will show the highest freezing point?

(1) $[Co (H_2O)_3 Cl_3]$. $3H_2O$ (3) $[Co (H_2O)_5 Cl] Cl_2$. H_2O (3)	(2) $[Co(H_2O)_6] Cl_3$ mathematical mathem
 Q49. How long (approximate) should water be electrolyst oxygen released can completely burn 27. 66 g of dil (1) 1.6 hours (3) 0.8 hours 	borane? (Atomic weight of $B = 10.8 \text{ u}$) (2) 6.4 hours (4) 3.2 hours
Q50. At 518°C, the rate of decomposition of a sample of	gaseous acetaldehyde, initially at a pressure of 363 Torr
was 1 .00 Torr s ⁻¹ when 5% had reacted and 0 .5 reaction is:	0 Torr s^{-1} when 33% had reacted. The order of the
$(1) 0 \\ (3) 3 \\ (3) 3 \\ (3) 3 \\ (3) 3 \\ (3) 3 \\ (3) $	(2) 2 (4) 1 mathongo /// mathongo /// mathongo
Q51. The compound that does not produce nitrogen gas b (1) $(NH_4)_2SO_4$	(2) $Ba(N_3)_2$
$(3) (NH_4)_2 Cr_2 O_7 $	(4) NH_4NO_{2} mathematical
Q52. Consider the following reaction and statements: $[Co (NH_3)_4 Br_2]^+ + Br^- \rightarrow [Co (NH_3)_3 Br_3] + N$ (i) Two isomers are produced if the reactant completion of the reactant c	
(ii) Two isomers are produced if the reactant complete	ex ion is a trans-isomer. // mathongo /// mathongo
(iii) Only one isomer is produced if the reactant con (iv) Only one isomer is produced if the reactant con	
The correct statements are	indulorige in indulorige in indulorige
(1) (ii) and (iv) (3) (i) and (iii) mothongo /// mothongo	(2) (i) and (ii) mathematical and (iv) mathematical and (iv)
Q53. The oxidation states of Cr in $[Cr (H_2O)_6] Cl_3$, $[Cr$	$(C_6H_6)_2]$ and $K_2[Cr(CN)_2(O)_2(O_2)(NH_3)]$, respectively,
are: (1) +3, 0 and +4 mothongo (3) +3, +2 and +4	(2) $+3, -4$ and $+6$ (4) $+3, 0$ and $+6$ (4) $+3, 0$ and $+6$ (4)
Q54. The major product of the following reaction is:	
Br NaOMe hongo // mothongo	
//. m(1) hor // mathongo // mathongo	(2) Mongo // mathongo // mathongo
///. mationgo ///. mathongo ///. mathongo	///. mationgo ///. mathongo ///. mathongo
	(4)

JEE Main Previous Year Paper MathonGo

Question Paper

form product B. A and B are respectively OH (1)and OCH₃ OCH₃ mathongo ///. mathongo ///. mathongo \cap Br OH /// mathongo /// mathongo /// mathongo OHathongBr (2)and - OCHmathongo OCH₁ mathon O Omathonao (3)nathongo 📶 mathongo 📶 mathongo and mathonao Br 😽 / mathongo 🕖 mathongo and Brithor Q56. The major product formed in the following reaction is: mathengo ///. mathongo ///. mathongo ///. mathongo ///. mathongo mathongo (2) mathongo ///. mathongo ///. mathongo (1)mathongo 📶 mathongo OH ///. mathongo ///. mathongo Imathongo /// mathongo ⁽⁴⁾ (3)OH // mathongo // mathongo 🗶 mathongo 🔣 mathongo 🕖 mathongo 🕖 mathongo 🖊 mathongo

Q55. Phenol reacts with methyl chloroformate in the presence of NaOH to form product A. A reacts with Br₂ to

Q57. Phenol on treatment with CO_2 in the presence of NaOH followed by acidification produces compound X as the major product. X on treatment with $(CH_3CO)_2O$ in the presence of catalytic amount of H_2SO_4 produces:

Question Paper

JEE Main Previous Year Paper MathonGo

//. n(1) ho CO2H //. mathongo //. mathongo (2) mathong //. mathongo //. mathongo
/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
$///$ matheory CO_2H matheory CO_2H matheory $///$ matheory $//$ matheory $/$ mat
Imathongo Imath
// mathongo // mathongo // mathongo // mathongo // mathongo // mathongo
// mathory // mathongo // mathongo // mathongo // mathongo
CO ₂ H CO ₂ H
mathongo <u>NH</u> 2 mathongo <u>M</u> mathongo <u>M</u> mathongo <u>M</u> mathongo <u>M</u>
(i) / V
/// mathongo /// mathongo NH /// mathongo /// mathongo /// mathongo /// mathongo
(ii) /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo
/// mathongo // mathongo // mathongo // mathongo // mathongo // mathongo
//. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo
//. n(iv)on ///. athongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
(1) (iv) < (ii) < (i) < (iii) < (iiii) < (iii) < (ii
Q59. Glucose on prolonged heating with HI gives ongo /// mathongo /// mathongo /// mathongo
(1) 6-iodohexanal (2) n-Hexane (3) 1-Hexene (4) Hexanoic acid
Q60. The predominant form of histamine present in human blood is $(pK_a, Histidine = 60)$
Gov. The predominant form of histamine present in numan blood is $(p_{x_a}, Histianie = 60)$

Question Paper

JEE Main Previous Year Paper MathonGo

/// n(1)hor _H o /// mathongo /// mathongo (2	2) mathongo /// mathongo /// mathongo
	M nother NH2ngo M mathengo
(2) mathongo (2) mathongo (2)	(// mathongo /// mathongo /// mathongo
\mathbb{N} mathe \mathbb{N} mathe \mathbb{N} mathender \mathbb{N} mathender \mathbb{N}	[™] nathango [™] mathongo [™] mathongo
11. mathong \mathbf{H} 11. mathongo 11. mathongo 1	$^{\prime\prime}$ mathematical mathemati
	2) Is an empty set
(4) (3) Contains exactly one element	4) Contains exactly two elements go and mothongo
	2) -1 mathongo 22 mathongo 22. mathongo
(3) 0 (2) mathematic mathematic mathematic (2) Q63. From 6 different novels and 3 different dictionaries, 4 r	4) 1 mathongo with mathongo with mathongo novels and 1 dictionary are to be selected and arranged
in a row on a shelf so that the dictionary is always in th	ne middle. The number of such arrangements is:
in a row on a shelf so that the dictionary is always in th (1) At least 750 but less than 1000 (2	ne middle. The number of such arrangements is: 2) At least 1000
(1) At least 750 but less than 1000 (2	a mationgo za mationgo za mationgo
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4)	2) At least 1000 4) At least 500 but less than 750
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + \dots$	 2) At least 1000 4) At least 500 but less than 750 m of the first 40 terms of the series
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 +$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2)	 2) At least 1000 4) At least 500 but less than 750 m of the first 40 terms of the series
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 +$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2) (3) 248 (4)	2) At least 1000 4) At least 500 but less than 750 n of the first 40 terms of the series 2) 232 mono 2 mothongo 2 moth
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + \dots$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2) (3) 248 (4) Q65. Let $a_1, a_2, a_3, \dots, a_{49}$ be in A. P. such that $\sum_{k=0}^{12} a_{4k}$ $a_1^2 + a_2^2 + \dots + a_{17}^2 = 140m$, then m is equal to:	2) At least 1000 4) At least 500 but less than 750 n of the first 40 terms of the series 2) 232 mono 2 mothongo 2 moth
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + \dots$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2) (3) 248 (4) Q65. Let $a_1, a_2, a_3, \dots, a_{49}$ be in A. P. such that $\sum_{k=0}^{12} a_{4k}$ $a_1^2 + a_2^2 + \dots + a_{17}^2 = 140m$, then m is equal to: (1) 33 (2)	2) At least 1000 4) At least 500 but less than 750 n of the first 40 terms of the series 2) 232 4) 464 $k_{+1} = 416$ and $a_9 + a_{43} = 66$. If methods of the series methods of the series m
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + \dots$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2) (3) 248 (4) Q65. Let $a_1, a_2, a_3, \dots, a_{49}$ be in A. P. such that $\sum_{k=0}^{12} a_{4k}$ $a_1^2 + a_2^2 + \dots + a_{17}^2 = 140m$, then m is equal to: (1) 33 (2) (3) 68 (4)	2) At least 1000 4) At least 500 but less than 750 n of the first 40 terms of the series (2) 232 (4) 464 $k_{+1} = 416$ and $a_9 + a_{43} = 66$. If (2) 66 (4) 34 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
(1) At least 750 but less than 1000 (2 (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 +$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2) (3) 248 (4) Q65. Let $a_1, a_2, a_3,, a_{49}$ be in A. P. such that $\sum_{k=0}^{12} a_{4k}$ $a_1^2 + a_2^2 + + a_{17}^2 = 140m$, then m is equal to: (1) 33 (2) (3) 68 (4)	2) At least 1000 4) At least 500 but less than 750 n of the first 40 terms of the series (2) 232 (4) 464 $k_{+1} = 416$ and $a_9 + a_{43} = 66$. If (2) 66 (4) 34 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
(1) At least 750 but less than 1000 (2) (3) Less than 500 (4) Q64. Let A be the sum of the first 20 terms and B be the sum $1^2 + 2 \cdot 2^2 + 3^2 + 2 \cdot 4^2 + 5^2 + 2 \cdot 6^2 + \dots$ If $B - 2A = 100\lambda$, then λ is equal to : (1) 496 (2) (3) 248 (4) Q65. Let $a_1, a_2, a_3, \dots, a_{49}$ be in A. P. such that $\sum_{k=0}^{12} a_{4k}$ $a_1^2 + a_2^2 + \dots + a_{17}^2 = 140m$, then m is equal to: (1) 33 (2) (3) 68 (4) Q66. The sum of the co-efficient of all odd degree terms in the $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5, (x > 1)$ is	2) At least 1000 4) At least 500 but less than 750 n of the first 40 terms of the series 2) 232 4) 464 $k_{+1} = 416$ and $a_9 + a_{43} = 66$. If 2) 66 4) 34 the expansion of

Q67. If sum of all the solutions of the equation $8\cos x \cdot \left(\cos\left(\frac{\pi}{6} + x\right) \cdot \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2}\right) = 1$ in $[0, \pi]$ is $k\pi$, then k is equal to:

JEE Main Previous Year Paper MathonGo

Question Paper

(1) $\frac{20}{9}$ ngo /// mathongo /// math (3) $\frac{13}{9}$	hongo (2) $\frac{2}{3}$ mathongo /// mathongo /// mathongo (4) $\frac{8}{9}$
	the sector of P is the coordinate axes at distinct points P and Q . If O is the
origin and the rectangle $OPRQ$ is completed (1) $3x + 2y = 6xy$	a, then the locus of R is: (2) $3x + 2y = 6$
(1) 3x + 2y = 0xy $(3) 2x + 3y = xy$	(2) $3x + 2y = 0$ (4) $3x + 2y = xy$
	6 touch the circle $x^2 + y^2 + 16x + 12y + c = 0$ then the value of
<i>c</i> is: (1) 95	nongo (2) 195 mathongo (2) mathongo (2) mathongo
(3) 185	(4) 85
📶 mathongo 📶 mathongo 📶 math	nongo 📶 mathongo 📶 mathongo 📶 mathongo
at $A \& B$, respectively. If C is the center of t value of $\tan \theta$ is:	on the parabola $y^2 = 16x$, which intersect the axis of the parabola the circle through the points P , $A \& B$ and $\angle CPB = \theta$, then a
$\begin{array}{c c} n(1) & \frac{4}{3} \\ (3) & 2 \end{array} \qquad \text{mathongo} \qquad \boxed{\begin{subarray}{c} math \\ math $	hongo $(2) \frac{1}{2}$ mathongo /// mathongo /// mathongo (4) 3
Q71. Two sets A and B are as under: $A = \{(a, b) B = \{(a, b) \in R \times R : 4(a-6)^2 + 9(b-3)\}$	$5)^2 \leq 36 \Big\}$. Then :
(1) neither $A \subset B$ nor $B \subset A$	$(2) D \subset H$
(3) $A \subset B$ (3) mathematical and the set of the set o	(4) $A \cap B = \phi$ (an empty set)
	$y^2 = 36$ at the points P and Q. If these tangents intersect at the
point $T(0, 3)$ then the area (in sq. units) of 2 (1) $36\sqrt{5}$	(2) $45\sqrt{5}$
$(3) 54\sqrt{3}$ mathenge $//$ math	hongo $(4) 60\sqrt{3}$ mathongo $///$ mathongo $///$ mathongo
Q73. For each $t \in R$, let $[t]$ be the greatest integer	t less than or equal to t . Then $\lim_{x \to 0^+} x(\left[\frac{1}{x}\right] + \left[\frac{2}{x}\right] + \ldots + \left[\frac{15}{x}\right])$
(1) does not exist (in R) (1) does not exist (in R) (3) is equal to 15	(2) is equal to 0 (4) is equal to 120
074. The Boolean expression $\sim(n \lor a) \lor (\sim n \land a)$	is equivalent to
	hongo $(2) \sim p$ (4) q mathongo /// mathongo /// mathongo
	45, then the standard deviation of the 9 items x_1, x_2, \ldots, x_9 is (2) 9
(1) 3	
	nongo (4) ² mathongo /// mathongo /// mathongo

Q76. PQR is a triangular park with PQ = PR = 200 m. A T.V. tower stands at the mid-point of QR. If the angles of elevation of the top of the tower at P, Q and R are respectively, 45°, 30° and 30°, then the height of the tower (in m) is:

(1) $50\sqrt{2}$ (3) 50			(2) 100 athongo (4) $100\sqrt{3}$		
Q77. Let the orthocent	re and centroid	of a triangle be $A($ -	-3, 5) and $B(3, 3)$ r	espectively. If C is	the circumcentre
of this triangle, the	hen the radius of	f the circle having l	ine segment AC as d	iameter, is:	
(1) $\frac{3\sqrt{5}}{2}$		//. mathongo	(2) V 10		
$\begin{array}{c} (3) \ 2\sqrt{10} \\ \hline \end{array} \\ \hline \end{array}$			$(4) \ 3\sqrt{\frac{5}{2}}$		
Q78. If the system of 1	inear equations				
x + ky + 3z = 0 3x + ky - 2z =					
-					
		, then $\frac{xz}{y^2}$ is equal t	o:		
(1) 30 ngo (1) (3) 10			(2) -10athongo (4) -30		
Q79. $ x-4 2x$	2x ongo				
-			en the ordered pair (.		
			(2) $(-4, -5)$		
			(4) (-4, 5)		
Q80. Let $S = ig \{ t \in R \}$	$:f(x)= x-\pi $	$ \cdot(e^{ x }-1)\sin x $	is not differentiabl	e at t . Then, the set	et S is equal to:
			 (2) φ (an empty set (4) {π} 		///. mathongo
Q81. If the curves $y^2 =$	$=6x,\ 9x^2+by^2$	r = 16 intersect eac	h other at right angle	s, then the value of	b is:
$(1) \frac{9}{2}$			(2) 6		
(3) $\frac{7}{2}$			(4) 4 mathongo		
Q82. Let $f(x) = x^2 +$	$rac{1}{x^2}$ and $g(x)=$	$x-rac{1}{x},\ x\in R-\{$	$-1, 0, 1$ }. If $h(x) =$	$=\frac{f(x)}{g(x)}$, then the local	al minimum value
of $h(x)$ is:					
$\begin{array}{c} (1) \ 2\sqrt{2} \\ (3) \ -3 \end{array} $			(2) 3 methongo (4) $-2\sqrt{2}$		
Q83. The integral $\int \frac{1}{(s)}$	$\frac{1}{10000000000000000000000000000000000$	$\frac{\cos^2 x}{\sin^3 x \cos^2 x + \cos^5 x)^2} dx$, is equal to		
(where C is the c	$\frac{1}{2}$ constant of integration	ration).			
(1) $\frac{-1}{1+\cot^3 x} + C$	mathongo	mathongo	(2) $\frac{1}{3(1+\tan^3 x)} + C$		
(3) $\frac{-1}{3(1+\tan^3 x)}$ +	Cmathongo		(4) $\frac{1}{1+\cot^3 x} + C$		
Q84. The values of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$	$rac{\sin^2 x}{1+2^x} dx$ is				
(1) $\frac{\pi}{4}$			(2) $\frac{\pi}{8}$		
· / H			0		
(3) $\frac{\pi}{2}$			(4) 4π		

	the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$.
Then the area (in sq. units) bounded by the curve $y = (1) + 1 \left(\sqrt{2} + 1 \right)$	
$(1)\frac{1}{2}(\sqrt{2}-1)$ mathenge (1) mathenge	
$(3) \frac{1}{2} \left(\sqrt{3} + 1 \right)$	(4) $\frac{1}{2}\left(\sqrt{3}-\sqrt{2}\right)$
(<i>M</i> mathongo <i>M</i> mathongo <i>M</i> mathongo	$\frac{d}{dt}$ mathongo $\frac{d}{dt}$ mathongo $\frac{d}{dt}$ mathongo $\frac{d}{dt}$ mathongo
Q86. Let $y = y(x)$ be the solution of the differential equation $y(\pi)$ is equal to	
then $y(\frac{\pi}{6})$ is equal to (1) $-\frac{4}{9}\pi^2$	(2) $\frac{4}{2\sqrt{2}}\pi^2$ mathongo /// mathongo
	9V 3
$\frac{1}{9\sqrt{3}}\pi$ mathematic mathematic mathematic	(4) $-\frac{8}{9}\pi^2$ hongo /// mathongo /// mathongo
Q87. Let \overrightarrow{u} be a vector coplanar with the vectors $\overrightarrow{a} = 2\hat{i} + \hat{i}$	$3\hat{j} - \hat{k}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$. If \overrightarrow{u} is perpendicular to \overrightarrow{a} and
$\overrightarrow{u} \cdot \overrightarrow{b} = 24$, then $ \overrightarrow{u} ^2$ is equal to:	mathongo mathongo mathongo
(3) 315	(4) 256
Q88. If L_1 is the line of intersection of the planes $2x - 2y$	$y+3z-2=0,\ x-y+z+1=0$ and L_2 is the line of
	y + 2z - 1 = 0, then the distance of the origin from the
plane, containing the lines L_1 and L_2 is	mationgo wa mationgo wa mationgo
$\begin{array}{c} (1) \frac{1}{\sqrt{2}} \\ (3) \frac{1}{3\sqrt{2}} \end{array} \qquad \text{mathenge} \qquad \text{mathenge} \end{array}$	(2) $\frac{1}{4\sqrt{2}}$
(3) $\frac{1}{3\sqrt{2}}$	(4) $\frac{1}{2\sqrt{2}}$ mathematical
O89 The length of the projection of the line segment join	ing the points $(5, -1, 4)$ and $(4, -1, 3)$ on the plane, $0 > 0$
x + y + z = 7 is	
*	(2) $\frac{2}{\sqrt{3}}$ hathongo /// mathongo /// mathongo
$(3) \frac{2}{3}$	(4) $\frac{1}{3}$
	/// mathongo /// mathongo /// mathongo
Q90. A bag contains 4 red and 6 black balls. A ball is drav	vn at random from the bag, its color is observed and this
	r are returned to the bag. If now a ball is drawn at random
from the bag, then the probability that this drawn ba	
$\binom{(1)\frac{3}{4}}{(3)\frac{2}{5}}$ mathongo mathongo	$(2) \frac{1}{10}$ (4) 1 mathongo /// mathongo /// mathongo
$(3)\frac{1}{5}$	$(4)\frac{1}{5}$

ANSWER KEYS	matherigo	///. minimingo	/%. 1000000 . go _/%.	mennengo	% nationalistago
1. (4) 2. (3)	3. (3)	<i>///</i> 4. (4)	5. (3) 6. (2)	7. (2)	8. (1) hongo
9. (2) 10. (4)	11. (4)	12. (4)	13. (3) 14. (2)	15. (3)	16. (2)
17. (3) athon 18. (4)	19. (3)	20. (4) 0000	21. (3) athon 22. (2)	23. (3)	24. (4)
25. (4) 26. (2)	27. (2)	28. (1)	29. (4) 30. (4)	31. (1)	32. (1)
33. (4) 34. (4)	35. (1)	36. (2)	37. (3) 38. (4)	39. (1)	40. (3)
41. (4) 42. (4)	43. (4)	44. (3)	45. (4) 46. (4)	47. (4)	48. (1)
49. (4) 50. (2)	51. (1)	52. (3)	53. (4) 54. (3)	55. (4)	56. (1)
57. (2) athon 58. (4)	59. (2)	60. (1) ongo	61. (4) athon 62. (4)	63. (2)	64. (3) ongo
65. (4) 66. (1)	67. (3)	68. (4)	69. (1) 70. (3)	71. (3)	72. (2)
73. (4) 74. (2)	75. (4)	76. (2)	77. (4) 78. (3)	79. (4)	80. (2)
81. (1) 82. (1)	83. (3)	84. (1)	85. (2) 86. (4)	87. (2)	88. (3)
89. (1) 90. (3)					