Question Paper

Q1. The current voltage relation of diode is given by $I = (e^{1000 \text{ V/T}} - 1) \text{ mA}$, where the applied voltage V is in volts and the temperature T is in degree Kelvin. If a student makes an error measuring ± 0.01 V while measuring the current of 5 mA at 300 K, what will be the error in the value of current in mA? mothongo (2) 0.02 mA (1) 0.2 mA// mathongo /// mathongo (4) 0.05 mAongo /// mathongo /// mathongo (3) 0.5 mA Q2. From a tower of height H, a particle is thrown vertically upwards with a speed u. The time taken by the particle, to hit the ground, is n times that taken by it to reach the highest point of its path. The relation between H, u and n is : (1) 2 g H = $n^2 u^2$ (2) g H = $(n - 2)^2 u^2$ (3) mothongo (4) mothongo (3) $2g H = nu^2(n - 2)$ mathematical end (4) g H = $(n - 2)u^2$ Q3. A block of mass m is placed on a surface with a vertical cross section given by $y = \frac{x^3}{6}$. If the coefficient of friction is 0.5, the maximum height above the ground at which the block can be placed without slipping is $(1) \frac{1}{6} m$ (2) $\frac{2}{3}$ m mathenge /// mathenge $(4)\frac{1}{2}$ mathenge /// mathenge /// mathenge $(3) \frac{1}{3} m$ Q4. When a rubber-band is stretched by a distance x, it exerts a restoring force of magnitude $F = ax + bx^2$ where a and b are constants. The work done in stretching the unstretched rubber-band by L is : (1) $aL^2 + bL^3$ (2) $\frac{1}{2}(aL^2 + bL^3)$ (3) $\frac{aL^2}{2} + \frac{bL^3}{3}$ mothongo // mothongo (4) $\frac{1}{2}(\frac{aL^2}{2} + \frac{bL^3}{3})$ // mothongo // mothongo **Q5.** A mass *m* is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release? m athongo 📶 mathongo 🣶 mathongo 🣶 mathongo 🥢 mathongo $(1) \frac{2g}{3}$ mathongo /// mathongo (4) g mathongo /// mathongo /// mathongo **Q6.** A bob of mass m attached to an inextensible string of length l is suspended from a vertical support. The bob rotates in a horizontal circle with an angular speed ω rad/s about the vertical. About the point of suspension : (1) Angular momentum is conserved (2) Angular momentum changes in magnitude but not in direction (3) Angular momentum changes in direction but not (4) Angular momentum changes both in direction and in magnitude magnitude

Q7. Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

Question Paper

JEE Main Previous Year Paper MathonGo

$(1)\sqrt{\frac{GM}{R}}$ mathematical //		(2) $\sqrt{2\sqrt{2}\frac{\mathrm{GM}}{\mathrm{R}}}$		
$(3) \sqrt{\frac{\text{GM}}{\text{R}} \left(1 + 2\sqrt{2}\right)}$		$(4) \frac{1}{2} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}}} \left(1 + 2\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}\right)$	(2) mathongo	
Q8. There is a circular tube in a vertical p	olane. Two liquic	ls which do not mix a	and of densities d ₁ a	nd d ₂ are filled in
the tube. Each liquid subtends 90° an	gle at centre. Ra	dius joining their inter	erface makes an ang	$\frac{1}{2}$ mathematical.
Ratio $\frac{d_1}{d_2}$ is :	mathongo	///. mathongo	///. mathongo	/// mathongo
d_2 mathema d_2				
d_1 mathematical d_1				
(1) $\frac{1+\sin\alpha}{1-\sin\alpha}$ (2) $\frac{1+\tan\alpha}{1-\tan\alpha}$ (3) $\frac{1+\tan\alpha}{1-\tan\alpha}$		(2) $\frac{1+\cos\alpha}{1-\cos\alpha}$ hongo (4) $\frac{1+\sin\alpha}{1-\cos\alpha}$		
O9. On heating water, bubbles being form	ned at the botton	n of the vessel detatel	and rise. Take the	bubbles to be
spheres of radius R and making a circ	cular contact of	radius r with the botto	om of the vessel. If	$r \leq R$, and the
surface tension of water is T, value of	f r just before bu	bbles detatch is :		
(density of water is $\rho_{\rm w}$)				
///. mathongo /// mathongo //				
R mathongo //				
$(1) R^2 \sqrt{\frac{2\rho_w g}{3T}}$		(2) $\mathrm{R}^2 \sqrt{\frac{\rho_{\mathrm{w}}\mathrm{g}}{6\mathrm{T}}}$		
(3) $R^2 \sqrt{\frac{\rho_w g}{T}}$ methongo //		$(4) R^2 \sqrt{\frac{3\rho_{\rm w} g}{T}}$		
Q10. An open glass tube is immersed in r	nercury in such	a way that a length of	f 8 cm extends abov	ve the mercury
level. The open end of the tube is th	en closed and se	ealed and the tube is r	aised vertically up l	by additional
46 cm. What will be length of the a	ir column above	mercury in the tube	now?	
(Atmospheric pressure = 76 cm of)	Hg)nathongo			
(1) 16 cm		(2) 22 cm		
(3) 38 cm // mathongo //		(4) 6 cm thongo		
Q11. The pressure that has to be applied t	to the ends of a s	teel wire of length 10) cm to keep its len	gth constant when
(For steel, Young's modulus is 2×1	$10^{11} { m N m}^{-2}$ and	coefficient of therma	l expansion is 1.1 >	$< 10^{-5} { m K}^{-1}$)
(1) 2 .2 $\times 10^8$ Pa	mathongo	(2) 2 .2 $\times 10^{9}$ Pa	M. mathongo	M. mathongo
(3) 2 .2 $\times 10^7$ Pa		(4) 2 .2 $\times 10^{6}$ Pa		

Q12. Three rods of Copper, Brass and Steel are welded together to form a Y-shaped structure. Area of cross-section of each rod is 4 cm². End of copper rod is maintained at 100°C. Where as ends of brass and steel are kept at

Question Paper

 0° C. Lengths of the copper, brass and steel rods are 46, 13 and 12 cms respectively. The rods are thermally insulated from surroundings except at ends. Thermal conductivities of copper, brass and steel are 0.92, 0.26 and 0.12 CGS units respectively. Rate of heat flow through copper rod is : (2) 2.4 Cal/s (1) 1.2 Cal/s (4) 6.0 Cal/s (3) 4.8 Cal/sQ13. One mole of diatomic ideal gas undergoes a cyclic process ABC as shown in figure. The process BC is adiabatic. The temperatures at A, B and C are 400 K, 800 K and 600 K respectively. Choose the correct statement : 800 K P 600 K 0000 400 K V (1) The change in internal energy in whole cyclic (2) The change in internal energy in the process CA process is 250 R is 700 R. (3) The change in internal energy in the process AB (4) The change in internal energy in the process BC is - 500 R is - 350 R Q14. A particle moves with simple harmonic motion in a straight line. In first τ s, after starting from rest it travels a distance a, and in next τ s it travels 2a, in same direction, then : honor (1) Amplitude of motion is 3a (2) Time period of oscillations is 8τ (3) Amplitude of motion is 4a (4) Time period of oscillations is 6τ Q15. A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column in the pipe whose frequencies lie below 1250 Hz. The velocity of sound in air is 340 m/s. (1) 12(2) 8(3) 6 ongo /// mathongo /// mathongo (4) 4 mathongo /// mathongo Q16. Assume that an electric field $\overrightarrow{\rm E} = 30x^2\hat{i}$ exists in space. Then the potential difference V_A - V_O, where V_O is the potential at the origin and V_A the potential at x = 2 m is : (1) 120 J C^{-1} mathongo ///. mathongo (2) -120 J C^{-1} ///. mathongo ///. mathongo (4) 80 J C^{-1} $(3) - 80 \text{ J C}^{-1}$ Q17. A parallel plate capacitor is made of two circular plates separated by a distance of 5 mm and with a dielectric of dielectric constant 2.2 between them. When the electric field in the dielectric is 3×10^4 V/m, the charge density of the positive plate will be close to : 0000 and 000000 (1) $6 \times 10^{-7} \text{ C/m}^2$ (2) $3 \times 10^{-7} \text{ C/m}^2$ (4) $6 \times 10^4 \text{ C/m}^2$ (3) $3 \times 10^4 \text{ C/m}^2$

Q18. In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW. The voltage of the electric mains is 220 V. The minimum capacity of the main fuse of the building will be:

Question Paper

JEE Main Previous Year Paper MathonGo

Q23. Match List - I (Electromagnetic wave type) with List - II (Its association/application) and select the correct

option from the choices given below the lists :

JEE Main Previous Year Paper MathonGo

Question Paper

	//. List - Iongo	//. mList-II o			
	(a) Infrared waves	(i) To treat m	uscular strain		
	(b) Radio waves	// (ii) For broad	casting mathongo		
	(c) X - rays	(iii) To detect t	fracture of bones		
	(d) Ultraviolet ray	s (iv) Absorbed	by the ozone layer of	f the atmosphere	
(1) (a) (b)	\mathbf{c}) (\mathbf{c}) (\mathbf{d})		(2) (a) (b) (c)	(\mathbf{d})	
(iv) (iii) (ii) (ii) (ii) (i	$\begin{array}{c} \text{i)} (\text{ii}) (\text{i}) \\ \text{o} (\textbf{c}) (\textbf{d}) \\ \text{o} (\text{i}) (\text{iv}) \end{array}$		(i) (ii) (iv) (4) (a) (b) (c) (i) (ii) (iii)	(iii) mathongo (d)	
mathongo		14. mathongo		mathongo	
Q24. A thin conve	ex lens made from cr	rown glass $\left(\mu = \frac{3}{2}\right)$	has focal length f .	When it is measured	in two different
liquids havin between the	ng refractive indices focal lengths is :	$\frac{4}{3}$ and $\frac{5}{3}$, it has the	e focal lengths f_1 and	f_2 respectively. The function of f_2 respectively.	ne correct relation
(1) $f_1 = f_2$	< f mathongo		(2) $f_1 > f$ and f_2	becomes negative	
(3) $f_2 > f$ a	and f_1 becomes nega	tive	(4) f_1 and f_2 both	become negative	
Q25. A green ligh	t is incident from the	e water to the air - v	vater interface at the	critical angle (θ_c) . S	Select the correct
///. (1) The entir	re spectrum of visibl	e light will come ou	it (2) The spectrum o	f visible light whose	e frequency is
of the wa	ater at an angle of 90	^o to the normal	less than that of	f green light will cor	ne out to the
(3) The spec	trum of visible light	whose frequency is	s (4) The entire spec	trum of visible light	will come out
mot more that air mediu	n that of green light	will come out to th	of the water at	various angles to the	e normal _{nathongo}
O26 Two beams	A and B of plane po	larized light with m	utually perpendicula	r planes of polarizat	tion are seen
through a pc	planoid. From the pos	ation when the beau	n A has maximum in	tensity (and beam B	has zero
intensity), a	rotation of polaroid	through 30° makes	the two beams appea	r equally bright. If t	the initial othongo
intensities of	f the two beams are	I_A and I_B respective	ely, then $\frac{I_A}{I_B}$ equals :		
///. m(1):30ngo		//. mathongo	$(2) \frac{3}{2}$ mathongo		
(3) 1			$(4) \frac{1}{3}$		
/// mathongo	//. mathongo	///. mathongo	///. mathongo	///. mathongo	///. mathongo
Q27. The radiation photoelectro	n corresponding to 3 ons. These electrons a	$rac{}{} ightarrow 2$ transition of l are made to enter a	nydrogen atom falls of magnetic field of 3 >	on a metal surface to $(10^{-4} \text{ T. If the radi})$	o produce us of the largest
circular path	followed by these e	lectrons is 10.0 mm	n, the work function of	of the metal is close	to :
(1) 1.8 eV			(2) 1.1 eV		
(3) 0.8 eV			(4) 1.6 eV		
Q28. Hydrogen (1	H^1), Deuterium (₁ H^1	²), singly ionised H	elium $({}_{2}\text{He}^{4})^{+}$ and defined	oubly ionised lithiur	$m(_{3}Li^{6})^{++}$ all have
one electron	around the nucleus.	Consider an electro	on transition from n	= 2 to $n = 1$. If the	wave lengths of
emitted radi	ation are $\lambda_1, \lambda_2, \lambda_3$:	and λ_4 respectively	then approximately	which one of the fol	lowing is correct ?
(1) $4\lambda_1 = 2$	$\lambda_2=2\lambda_3=\lambda_4$		(2) $\lambda_1 = 2\lambda_2 = 2\lambda$	$\lambda_3=\lambda_4$	
(3) $\lambda_1 = \lambda_2$	$=4\lambda_3=9\lambda_4$		(4) $\lambda_1 = 2\lambda_2 = 3\lambda_2$	$\lambda_3=4\lambda_4$	

Question Paper

JEE Main Previous Year Paper MathonGo

Q29. The forward biased diode connection is : athongo	
$(1) + 2 \vee - 2 \vee$	(2) -3V $-3V$
/// mathongo 📶 mathongo /// mathongo	111. mathongo 111. mathongo 111. mathongo
$(3) \xrightarrow{2 \vee} \xrightarrow{4 \vee}$	$(4) - 2 \vee \qquad \qquad$
///. mathongo ///. mathongo	///. mathongo ///. mathongo ///. mathongo
Q30. A student measured the length of a rod and wrote it	as 3.50 cm. Which instrument did he use to measure it ?
(1) A meter scale mathematic was mathematic	(2) A vernier calliper where the 10 divisions in the second vernier scale matches with 9 division in main
	scale and main scale has 10 divisions in 1 cm thongo
(3) A screw gauge having 100 divisions in the	(4) A screw gauge having 50 divisions in the circular
matcircular scale and pitch as 1 mm	scale and pitch as 1 mm athongo
Q31. The ratio of masses of oxygen and nitrogen in a part their molecules is:	ticular gaseous mixture is 1 : 4. The ratio of number of
(1) 1 : 4	(2) 7 : 32
///. n(3) 1:890 /// mathongo ///. mathongo	(4) 3 : 16 hongo /// mathongo /// mathongo
Q32. The correct set of four quantum numbers for the val	ence electrons of rubidium atom $(Z = 37)$ is
$(1) 5, 0, 0, + \frac{1}{2}$	(2) 5, 1, 0, $+\frac{1}{2}$
(3) 5, 1, 1, $+\frac{1}{2}$	$(4) 5, 0, 1, + \frac{1}{2}$
Q33. Which one of the following properties is not shown	by NO ?
(1) It is diamagnetic in gaseous state mothon go	(2) It is a neutral oxide mothongo /// mothongo
(3) It combines with oxygen to form nitrogen	(4) It's bond order is 2.5
//. matdioxide //. mathongo //. mathongo	
Q34. For which of the following molecule significant μ_{7}	<i>∠</i> 0 ?
mathon ci mathon ci mathongo	
\rightarrow	
///. mathon CI /// mathon CN ///. mathongo	
OH SH	
mathons mathons mathons	
OH SH	
(1) Only (a)	(2) (a) and (b)
(3) Only (c)	(4) (c) and (d)

Q35. If Z is the compressibility factor, then Van der Waal's equation at low pressure can be written as:

Question Paper

/// $r(1) Z = 1 + \frac{RT}{Pb}$ mathongo /// mathongo	(2) $\mathbf{Z} = 1 - \frac{\mathbf{a}}{\mathbf{VBT}}$ mathongo ///. mathongo
(3) $\mathrm{Z} = 1 - \frac{\mathrm{Pb}}{\mathrm{RT}}$	$(4) Z = 1 + \frac{Pb}{RT}$
O36. For complete combustion of ethanol.	
$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l),$	
the amount of heat produced as measured in bomb of	calorimeter, is 1364.47 kJ mol ^{-1} at 25°C. Assuming
ideality the Enthalpy of combustion, $\Delta_{c}H$, for the r	eaction will be: $(\mathrm{R}=8.314~\mathrm{kJ~mol^{-1}})$
$(1) -1366.95 \text{ kJ mol}^{-1}$ mol (1)	$(2) -1361.95 \text{ kJ mol}^{-1}$ mathenage ///. mathenage
$(3) - 1460.50 \text{ kJ mol}^{-1}$	$(4) -1350.50 \ \rm kJ \ mol^{-1}$
Q37. For the reaction $\mathrm{SO}_2(\mathrm{g}) + rac{1}{2}\mathrm{O}_2(\mathrm{g}) \rightleftharpoons \mathrm{SO}_3(\mathrm{g})$, if I	$K_{\rm P} = { m K_C}({ m RT})^x$ where the symbols have usual meaning
then the value of x is: (assuming ideality)	
(1) - 1	$(2) - \frac{1}{2}$
(3) $\frac{1}{2}$ mathongo (3) mathongo	(4) 1 ^m athongo /// mathongo /// mathongo
Q38. In which of the following reactions H_2O_2 acts as a	reducing agent ?
${\rm (a)}\ \ {\rm H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O}$	
$(b) \hspace{0.1cm} \mathrm{H_2O_2} - 2\mathrm{e^-} \rightarrow \mathrm{O_2} + 2\mathrm{H^+} \hspace{0.1cm} \text{mathematical}$	
(c) $H_2O_2 + 2e^- \rightarrow 2OH^-$	
(d) $H_2O_2 + 2OH - 2e^- \rightarrow O_2 + 2H_2O$	/// mathongo ///. mathongo ///. mathongo
(1)(a), (b)	(2) (c), (d)
/// mathongo /// mathongo /// mathongo	(4) (b) , (d) // mathongo // mathongo
Q39. For the estimation of nitrogen, 1.4 g of an organic of	compound was digested by the Kjeldahl method and the
evolved ammonia was absorbed in 60 ml of $\frac{M}{10}$ sul	phuric acid. The unreacted acid required 20 ml of $\frac{M}{10}$
sodium hydroxide for complete neutralization. The	percentage of nitrogen in the compound is
/// n(1)6%ngo /// mathongo /// mathongo	(2) 10% mathenge // mathenge
(3) 3%	(4) 5%
Q40. Considering the basic strength of amines in an aque	ous solution, which one has the smallest pK_b value?
(1) (CH ₃) NH	(2) $CH_3 NH_2$
(3) (CH ₃) $_3$ N $($ mathenge $($ mathenge	(4) $C_6H_5NH_2$ go /// mathongo /// mathongo
O41 The major organic compound formed by the reaction	n of [1, 1, 1] - trichloroethane with silver now der is :
(1) Acetylene	(2) Ethene (2) Ethene
(3) 2 - Butyne	(4) 2 - Butene
111. mathongo 111. mathongo 111. mathongo	///. mathongo ///. mathongo ///. mathongo
Q42. CsCl crystallises in body centred cubic lattice. If 'a'	is its edge length then which of the following expressions
15 correct? mathongo // mathongo	$\frac{1}{2}$ mathengo $\frac{1}{3a}$ mathengo $\frac{1}{2}$ mathengo
(1) $\mathbf{r}_{Cs^+} + \mathbf{r}_{Cl^-} = 3\mathbf{a}$ (2) $\mathbf{r}_{Cs^+} + \mathbf{r}_{Cl^-} = 3\mathbf{a}$	(2) $r_{Cs} + r_{Cl} = \frac{1}{2}$
(5) $\mathbf{r}_{\mathrm{Cs}^+} + \mathbf{r}_{\mathrm{Cl}^-} = \frac{1}{2} \mathbf{a}$	(4) $r_{Cs^+} + r_{Cl^-} = v a$

Q43. Consider separate solutions of 0. 500 M C_2H_5 OH (aq), 0. 100 M Mg₃ (PO₄)₂ (aq), 0. 250 M KBr (aq) and 0. 125 M Na₃ PO₄ (aq) at 25 °C. Which statement is true about these solutions, assuming all salts to be

Question Paper

strong electrolytes? othorses /// m	
(1) They all have the same osmotic press	ure. (2) 0.100 M $Mg_3(PO_4)_2$ (aq) has the highest
	athongo // osmotic pressure. // mathongo /// mathongo
(3) 0. 125 M Na ₃ PO ₄ (aq) has the high	test osmotic (4) $0.500 \text{ M C}_2\text{H}_5 \text{ OH}$ (aq) has the highest osmotic
pressure. mathongo //. m	athongo messure. // mathongo mathongo
Q44. Resistance of 0.2 M solution of an electr	olyte is 50 Ω . The specific conductance of the solution is 1.4 S m ⁻¹ .
The resistance of 0.5 M solution of the s the electrolyte in S $m^2 mol^{-1}$ is :	ame electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of
///. In (1) 5×10^{-4} ///. In mathematical ///. In	athongo (2) 5×10^{-3} ngo /// mathongo /// mathongo
$(3) 5 imes 10^3$	$(4)~5 imes 10^2$
Q45 The equivalent conductance of NaCl at	concentration C and at infinite dilution are λ_{C} and λ_{c} , respectively
The correct relationship between $\lambda_{\rm C}$ and	λ_{∞} is given as :
(where the constant B is positive)	athongo /// mathongo /// mathongo /// mathongo
(1) $\lambda_{\mathrm{C}} = \lambda_{\infty} + (\mathrm{B})\mathrm{C}$	(2) $\lambda_{ m C} = \lambda_{\infty} - ({ m B}){ m C}$
(3) $\lambda_{\mathrm{C}} = \lambda_{\infty} - (\mathrm{B})\sqrt{\mathrm{C}}$ (3) $\lambda_{\mathrm{C}} = \lambda_{\infty} - (\mathrm{B})\sqrt{\mathrm{C}}$	athongo (4) $\lambda_{ m C}=\lambda_{\infty}+({ m B})\sqrt{{ m C}}$ mathongo (4) and (4)
Q46. The metal that cannot be obtained by the	electrolysis of an aqueous solution of its salt is
(1) Ag	(2) Ca
(3) Cu	(4) Cr
Q47. Given below are the half - cell reactions	
${ m Mn}^{2+}+2{ m e}^- ightarrow { m Mn}$; ${ m E}^\circ=-1.1$	8 Vhongo ///. mathongo ///. mathongo ///. mathongo
$2ig(\mathrm{Mn^{3+}+e^-} ightarrow\mathrm{Mn^{2+}}ig) \ ; \ \ \mathrm{E^\circ}=+1.5$	1 V
The E° for $3\mathrm{Mn}^{2+} ightarrow \mathrm{Mn} + 2\mathrm{Mn}^{3+}$ will	lbe: Mathongo ///. mathongo ///. mathongo ///. mathongo
(1) - 2.69 V; the reaction will not occur	(2) -2.69 V; the reaction will occur
(3) -0.33 V; the reaction will not occur	(4) -0.33 V; the reaction will occur
Q48. For the non-stoichiometry reaction, 2A -	$B \rightarrow C + D$, the following kinetic data were obtained in three
separate experiments, all at 298 K.	
Initial Concentration Ini	tial Concentration Initial rate of formation of C
///. mathongo (A) mathongo ///. (B)	athongo ///. m $(mol L_{2}^{-}S^{-})$ // mathongo ///. mathongo
0.1 M 0.1	$ m M$ $ m 1.2 imes 10^{-3}$
mathongo 0.1 Mathongo /// 0.2	Mhongo ///. m 1.2×10^{-3} ///. mathongo ///. mathongo
0.2 M 0.1	$ m M$ $ m 2.4 imes 10^{-3}$
777. mathongo 777. mathongo 777. m	
The rate law for the formation of C is $(1) dC = 1$ [A][D]	(2) d (-1) (1) (2) (2)
(1) $\frac{dt}{dt} = \mathbf{k}[\mathbf{A}][\mathbf{B}]$ (3) $\frac{dc}{dt} = \mathbf{k}[\mathbf{A}][\mathbf{B}]^2$	athongo (2) $\frac{dc}{dt} = k[A]^{-}[B]$ mathongo (4) $\frac{dc}{dt} = k[A]$

Q49. Which series of reactions correctly represents the chemical relations related to iron and its compound?

Question Paper

JEE Main Previous Year Paper MathonGo

$(1) \operatorname{Fe} \xrightarrow{\operatorname{dilute} \operatorname{H}_2\operatorname{SO}_4} \operatorname{FeSO}_4 \xrightarrow{\operatorname{H}_2\operatorname{SO}_4,\operatorname{O}_2} \operatorname{Fe}_2(\operatorname{SO}_4)_2 \xrightarrow{\operatorname{heat}} 1$	$Fe^{(2)} \operatorname{Fe} \xrightarrow{O_2, \operatorname{heat}} FeO \xrightarrow{\operatorname{dilute} \operatorname{H}_2 \operatorname{SO}_4} FeSO_4 \xrightarrow{\operatorname{heat}} FeO^{(2)} FeO^{(2)} \operatorname{Fe} F$
$(3) \operatorname{Fe} \xrightarrow{\operatorname{Cl}_2, \operatorname{heat}} \operatorname{FeCl}_3 \xrightarrow{\operatorname{heat}, \operatorname{air}} \operatorname{FeCl}_2 \xrightarrow{\operatorname{Zn}} \operatorname{Fe}$	(4) $\operatorname{Fe} \xrightarrow{O_2, \text{ heat}} \operatorname{Fe}_3 O_4 \xrightarrow{\operatorname{CO}, 600^{\circ} \operatorname{C}} \operatorname{FeO} \xrightarrow{\operatorname{CO}, 700^{\circ} \operatorname{C}} \operatorname{Fe}$
O50. Among the following oxoacids, the correct decreasi	ng order of acid strength is :
(1) $HOCl > HClO_2 > HClO_3 > HClO_4$	(2) $HClO_4 > HOCl > HClO_2 > HClO_3$
$(3) \text{HClO}_4 > \text{HClO}_3 > \text{HClO}_2 > \text{HOCl}$	(4) $HClO_2 > HClO_4 > HClO_3 > HOCl$
Q51. The equation which is balanced and represents the c	orrect product(s) is
$(1) \operatorname{Li}_2\mathrm{O} + 2\mathrm{KCl} \rightarrow 2\mathrm{Li}\mathrm{Cl} + \mathrm{K}_2\mathrm{O}$	(2) $[\text{CoCl}(\text{NH}_3)_5]^+ + 5\text{H}^+ \rightarrow \text{Co}^{2+} + 5\text{NH}_4^+ + \text{Cl}^-$
${}^{(3)}\left[\mathrm{Mg}\left(\mathrm{H}_{2}\mathrm{O} ight)_{6} ight]^{2+}+\left(\mathrm{EDTA} ight)^{4-} \overset{\mathrm{excess}\mathrm{NaOH}}{\longrightarrow} \left[\mathrm{Mg}(\mathrm{H}_{2}\mathrm{O})_{6} ight]^{2+}$	$\mathbf{K}_{2}^{4} \mathbf{K}_{2}^{4} \mathbf{K}_{4}^{4} \mathbf{K}_{2}^{4} \mathbf{C} \mathbf{N} \rightarrow \mathbf{K}_{2}^{2} [\mathrm{Cu} (\mathrm{CN})_{4}] + \mathbf{K}_{2}^{4} \mathrm{SO}_{4}$
Q52. The octahedral complex of a metal ion M^{3+} with fo	ur monodentate ligands L_1 , L_2 , L_3 and L_4 absorb
wavelengths in the region of red, green, yellow and	blue, respectively. The increasing order of ligand strength
for the four ligands is a thongo when a mathematic	
$(1) {\rm L}_4 \ < \ {\rm L}_3 \ < \ {\rm L}_2 \ < \ {\rm L}_1$	$(2) {\rm L}_1 \ < \ {\rm L}_3 \ < \ {\rm L}_2 \ < \ {\rm L}_4$
$(3) L_3 < L_2 < L_4 < L_1 go /// mathongo$	(4) $L_1 < L_2 < L_4 < L_3$ thongo ///. mothongo
Q53. The correct statement for the molecule CsI_3 , is :	
(1) It is a covalent molecule.	(2) It contains Cs^+ and I_3^- ions.
(3) It contains Cs^{3+} and I^{-} ions	(4) It contains Cs^+ , I^- and lattice I ₂ molecule
	(4) it contains $(5)^{-1}$, 1^{-1} and lattice 1_2 indicedic.
O54. In S _N 2 reactions, the correct order of reactivity for t	he following compounds :
Q54. In S_N^2 reactions, the correct order of reactivity for t CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₂ CCl is	he following compounds :
Q54. In S _N 2 reactions, the correct order of reactivity for t CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₂ Cl > (CH ₂) ₂ CHCl > CH ₂ CH ₂ Cl >	(4) It contains OS^{-1} , I^{-1} and fattice I_{2}^{0} motioned. the following compounds : (2) $CH_{2}Cl > CH_{2}CH_{2}Cl > (CH_{2})_{2}CHCl >$
Q54. In S _N 2 reactions, the correct order of reactivity for t CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₂) ₂ CCl	(4) It contains CS^{-1} , T^{-1} and fattice T_2 molecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH ₂) ₂ CCl
Q54. In S _N 2 reactions, the correct order of reactivity for t CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₃) ₃ CCl (3) CH ₂ CH ₂ Cl > CH ₂ Cl > (CH ₂) ₂ CHCl >	(4) It contains CS^{-1} , 1 and fattice F_2 motioned. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl mathematication (CH_3)_2CHCl > (CH_3)_3CCl mathematication (CH_3)_
Q54. In S _N 2 reactions, the correct order of reactivity for t CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₃) ₃ CCl (3) CH ₃ CH ₂ Cl > CH ₃ Cl > (CH ₃) ₂ CHCl > (CH ₃) ₂ CCl	(4) It contains CS^{-1} , T^{-1} and fattice F_2 molecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl (4) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl >$ (CH_2)_2CCl
Q54. In S _N 2 reactions, the correct order of reactivity for t CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₃) ₃ CCl (3) CH ₃ CH ₂ Cl > CH ₃ Cl > (CH ₃) ₂ CHCl > (CH ₃) ₃ CCl	(4) It contains CS^{-1} , 1 and fattice F_2 motioned. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl mathematic (CH_3)_2CHCl > $CH_3CH_2Cl > CH_3CH_2Cl > CH_3Ch_2Ch_3Ch_3Ch_3Ch_3Ch_3Ch_3Ch_3Ch_3Ch_3Ch_3$
Q54. In S _N 2 reactions, the correct order of reactivity for t $CH_3Cl, CH_3CH_2Cl, (CH_3)_2CHCl and (CH_3)_3CCl is$ (1) $CH_3Cl > (CH_3)_2CHCl > CH_3CH_2Cl >$ (CH_3)_3CCl (3) $CH_3CH_2Cl > CH_3Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl Q55. The most suitable reagent for the conversion of R –	(4) It contains Os^{-1} , I^{-1} and fattice F_2 morecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl (4) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl >$ (CH_3)_3CCl $CH_2 - OH \rightarrow R - CHO is :$
Q54. In S _N 2 reactions, the correct order of reactivity for t $CH_3Cl, CH_3CH_2Cl, (CH_3)_2CHCl and (CH_3)_3CCl is$ (1) $CH_3Cl > (CH_3)_2CHCl > CH_3CH_2Cl >$ (CH_3)_3CCl (3) $CH_3CH_2Cl > CH_3Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl (CH_3)_3CCl (CH_3)_3CCl (CH_3)_3CCl (CH_3)_3CCl	(4) It contains OS^{-1} , T^{-1} and fattice F_2 molecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl (4) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl >$ (CH_3)_3CCl $CH_2 - OH \rightarrow R - CHO is :$ (2) $K_2Cr_2O_7$
Q54. In $S_N 2$ reactions, the correct order of reactivity for t $CH_3Cl, CH_3CH_2Cl, (CH_3)_2CHCl and (CH_3)_3CCl is$ (1) $CH_3Cl > (CH_3)_2CHCl > CH_3CH_2Cl >$ (CH_3)_3CCl (3) $CH_3CH_2Cl > CH_3Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl Q55. The most suitable reagent for the conversion of R – (1) KMnO ₄ (3) CrO_3	(4) It contains Os^{-1} , 1^{-1} and fattice F_2 morecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl (4) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl >$ (CH_3)_3CCl $CH_2 - OH \rightarrow R - CHO is :$ (2) $K_2Cr_2O_7$ (4) PCC (Pyridinium Chlorochromate)
Q54. In $S_N 2$ reactions, the correct order of reactivity for t $CH_3Cl, CH_3CH_2Cl, (CH_3)_2CHCl and (CH_3)_3CCl is$ (1) $CH_3Cl > (CH_3)_2CHCl > CH_3CH_2Cl >$ (CH_3)_3CCl (3) $CH_3CH_2Cl > CH_3Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl Q55. The most suitable reagent for the conversion of R – (1) KMnO ₄ (3) CrO_3 Q56. What is the product "C" after following reactions -	(4) It contains Os^{-1} , 1^{-1} and fattice F_{2} molecule. the following compounds : (2) $CH_{3}Cl > CH_{3}CH_{2}Cl > (CH_{3})_{2}CHCl >$ (CH_{3}) $_{3}CCl$ (4) $(CH_{3})_{2}CHCl > CH_{3}CH_{2}Cl > CH_{3}Cl >$ (CH_{3}) $_{3}CCl$ CH $_{2} - OH \rightarrow R - CHO is : (2) K_{2}Cr_{2}O_{7}(4) PCC (Pyridinium Chlorochromate)$
Q54. In S _N 2 reactions, the correct order of reactivity for the CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₃) ₃ CCl (3) CH ₃ CH ₂ Cl > CH ₃ Cl > (CH ₃) ₂ CHCl > (CH ₃) ₃ CCl (CH ₃) ₃ CCl Q55. The most suitable reagent for the conversion of R – (1) KMnO ₄ (3) CrO ₃ Q56. What is the product "C" after following reactions - 125° H^+	(4) It contains OS^{-1} , I^{-1} and fattice P_2 molecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl >$ (CH_3)_3CCl (4) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl >$ (CH_3)_3CCl $CH_2 - OH \rightarrow R - CHO is :$ (2) $K_2Cr_2O_7$ (4) PCC (Pyridinium Chlorochromate)
Q54. In S _N 2 reactions, the correct order of reactivity for the CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₃) ₃ CCl (3) CH ₃ CH ₂ Cl > CH ₃ Cl > (CH ₃) ₂ CHCl > (CH ₃) ₃ CCl (CH ₃) ₃ CCl Q55. The most suitable reagent for the conversion of R – (1) KMnO ₄ (3) CrO ₃ Q56. What is the product "C" after following reactions - $O(1 + CO_2 +$	(4) It contains OS^{-1} , I^{-1} and fattice P_{2} molecule. the following compounds : (2) $CH_{3}Cl > CH_{3}CH_{2}Cl > (CH_{3})_{2}CHCl > (CH_{3})_{3}CCl$ (4) $(CH_{3})_{2}CHCl > CH_{3}CH_{2}Cl > CH_{3}Cl > (CH_{3})_{3}CCl$ $CH_{2} - OH \rightarrow R - CHO is :$ (2) $K_{2}Cr_{2}O_{7}$ (4) PCC (Pyridinium Chlorochromate)
(b) Noomania Color and Tribula Q54. In S _N 2 reactions, the correct order of reactivity for the CH ₃ Cl, CH ₃ CH ₂ Cl, (CH ₃) ₂ CHCl and (CH ₃) ₃ CCl is (1) CH ₃ Cl > (CH ₃) ₂ CHCl > CH ₃ CH ₂ Cl > (CH ₃) ₃ CCl (3) CH ₃ CH ₂ Cl > CH ₃ Cl > (CH ₃) ₂ CHCl > (CH ₃) ₃ CCl Q55. The most suitable reagent for the conversion of R – (1) KMnO ₄ (3) CrO ₃ Q56. What is the product "C" after following reactions - intermode = intermode = i	(4) It contains OS^{-1} , I^{-1} and fattice P_2 molecule. the following compounds : (2) $CH_3Cl > CH_3CH_2Cl > (CH_3)_2CHCl > (CH_3)_3CCl$ (4) $(CH_3)_2CHCl > CH_3CH_2Cl > CH_3Cl > (CH_3)_3CCl$ $CH_2 - OH \rightarrow R - CHO is :$ (2) $K_2Cr_2O_7$ (4) PCC (Pyridinium Chlorochromate)
(c) It contains of a first formation of the formation of	(4) It contains Cs^{-1} , 1 and rather r_{2} molecule. the following compounds : (2) $CH_{3}Cl > CH_{3}CH_{2}Cl > (CH_{3})_{2}CHCl > (CH_{3})_{3}CCl$ (4) $(CH_{3})_{2}CHCl > CH_{3}CH_{2}Cl > CH_{3}Cl > (CH_{3})_{3}CCl$ $CH_{2} - OH \rightarrow R - CHO is :$ (2) $K_{2}Cr_{2}O_{7}$ (4) PCC (Pyridinium Chlorochromate)

Question Paper

m(1) holo COCH3 mathongo mathongo	(2) n OH hongo ///. mathongo ///. mathongo
mathongo mathongo	COCH ₃ mathongo /// mathongo
(3) OH mathongo (3) OH	(4) COCH ₃ (4) Mathongo Mathongo Mathongo
///. mathongo COOCH3 thongo ///. mathongo	COOH mathongo /// mathongo
Q57. In the reaction, We have a set of the set of th	
$\begin{array}{c} & \text{CH}_3\text{COOH} \xrightarrow{\text{LiAlH}_4} \text{A} \xrightarrow{\text{PCl}_5} \text{B} \xrightarrow{\text{Alc. KOH}} \text{C, athongo} \\ & \text{the product C is :} \end{array}$	
(1) Acetaldehyde mathongo /// mathongo (3) Ethylene	(2) Acetylene mathongo(4) Acetyl chloride
Q58. On heating an aliphatic primary amine with chlorof	orm and ethanolic potassium hydroxide, the organic
compound formed is : (1) An alkanol (1) mathenge (1) mathenge (3) An alkyl cyanide	 (2) An alkanediol <i>mathongo mathongo</i> (4) An alkyl isocyanide
Q59. Which among the following is classified as a conder	nsation polymer?
(1) Dacron (3) Teflon mathongo mathongo	(2) Neoprene(4) Acrylonitrile
Q60. Which one of the following bases is not present in I	DNA?mathongo ///. mathongo ///. mathongo
(1) Quinoline	(2) Adenine
mathongo mathongo	(4) Inymineongo ///. mathongo ///. mathongo
Q61. If $a \in R$ and the equation $-3(x - \lfloor x \rfloor)^2 + 2(x + 2)$	$-[x]$) + $a^2 = 0$ (where [x] denotes the greatest integer
(1) (-2, -1)	(2) $(-\infty, -2) \cup (2,\infty)$
(3) $(-1,0) \cup (0,1)$ athongo (4) mathongo	(4) (1,2) thongo /// mathongo /// mathongo
Q62. Let α and β be the roots of equation $px^2 + qx + r$ value of $ \alpha - \beta $ is	= 0, $p \neq 0$. If p , q , r are in A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the
$(1) \frac{\sqrt{34}}{9}$ $(3) \frac{\sqrt{61}}{9}$ (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	(2) $\frac{2\sqrt{13}}{9}$ (4) $\frac{2\sqrt{17}}{9}$ thongo /// mathongo /// mathongo
Q63. If z is a complex number such that $ z \ge 2$, then the (1) Is strictly greater than $\frac{5}{2}$ (3) Is equal to $\frac{5}{2}$	minimum value of $ z + \frac{1}{2} $: athongo (2) Is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$ (4) Lies in the interval (1, 2)
Q64. If $(10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + \dots + 10(10)^8 + 10^8$	${(11)}^9 = k{(10)}^9$, then k is equal to :

Question Paper

(1) 100 go (3) $\frac{121}{10}$ (3) $\frac{121}{10}$ (1) mathematical mathema	(2) 110 athongo /// mathongo /// mathongo (4) $\frac{441}{100}$								
Q65. Three positive numbers form an increasing G. P. If the middle term in this G. P. is doubled, the new numbers									
are in A. P. Then the common ratio of the G. P. is :									
(1) $2 - \sqrt{3}$ mathematical ma	(2) $2 + \sqrt{3}$ ongo /// mathongo /// mathongo								
$(3) \sqrt{2} + \sqrt{3}$	(4) $3 + \sqrt{2}$								
Q66. If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 - 2x)^{18}$ in powers of x are both zero,									
then (a, b) is equal to (1) (14^{-272})	(2) (16 272) // mathongo // mathongo								
$(1) (14, \frac{-3}{3})$ (3) (16, $\frac{251}{3}$)	$(2) (10, \frac{3}{3})$ $(4) (14, \frac{251}{3})$								
(3) $(10, \frac{3}{3})$ $(11, \frac{3}{3})$ mathengo $(11, 10)$ mathengo	(4) (14, 3) mathongo /// mathongo								
Q67. Let $f_k(x) = rac{1}{k} \left(\sin^k x + \cos^k x ight)$ where $x \in R$ and	$k{\geq}1.$ Then $f_4(x)-f_6(x)$ equals								
///. n(1) $\frac{1}{4}$ ongo ///. mathongo ///. mathongo	(2) $\frac{1}{12}$ nathongo ///. mathongo ///. mathongo								
(3) $\frac{1}{6}$	$(4) \frac{1}{3}$								
Q68. Let PS be the median of the triangle with vertices .	$P(2,2), \ Q(6,-1)$ and $R(7,3)$. The equation of the line								
passing through $(1, -1)$ and parallel to PS is	(2) $2m = 0 + 11 - 0$ mothers // mothers								
(1) 4x + 7y + 3 = 0 $(3) 4x - 7y - 11 = 0$	$\begin{array}{c} (2) \ 2x - 9y - 11 = 0 \\ (4) \ 2x + 9y + 7 = 0 \end{array}$								
(3) 4x - 1y - 11 = 0	(+) $2x + 3y + 1 = 0$								
Q69. Let a , b , c and d be non-zero numbers. If the point	of intersection of the lines								
4ax + 2ay + c = 0 & 5bx + 2by + d = 0 lies in the	e fourth quadrant and is equidistant from the two axes then								
$(1) \ 3bc - 2ad = 0$	$(2) \ 3bc + 2ad = 0$								
$(3) \ 2bc - 3ad = 0$	$(4) \ 2bc + 3ad = 0$								
O70. Let C be the circle with center at $(1, 1)$ and radius	= 1. If T is the circle centered at $(0, y)$, passing through the								
\sim origin and touching the circle C externally, then the	radius of T is equal to								
$(1)\frac{1}{2}$	(2) $\frac{1}{4}$								
(3) $\frac{\sqrt{3}}{\sqrt{2}}$	(4) $\frac{\sqrt{3}}{2}$								
Q71. The locus of the foot of perpendicular drawn from t	the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is								
(1) $(x^2 + y^2)^2 = 6x^2 + 2y^2$	$(2) (x^2 + y^2)^2 = 6x^2 - 2y^2$								
$(3) (x^2 - y^2)^{-} = 6x^2 + 2y^2$	$(4) (x^2 - y^2)^- = 6x^2 - 2y^2$								
Q72. $\sin(\pi \cos^2 x)$.									
$\lim_{x \to 0} \frac{1}{x^2}$ is equal to									
$(1) -\pi$	(2) π								
$(3) \frac{\pi}{2}$	(4) 1								
Q73. The statement $\sim (p \leftrightarrow \sim q)$ is									
(1) A tautology	(2) A fallacy								
(3) Equivalent to $p\leftrightarrow q$	(4) Equivalent to $\ensuremath{\text{-}p} \leftrightarrow q$								

Q74. The variance of the first 50 even natural numbers is :

Question Paper

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2) $\frac{437}{4}$ athongo /// mathongo /// mathongo (4) 833							
Q75. A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is 45°. It flies off horizontally straight away from the point O . After one second, the elevation of the bird from O is reduced to 30°. Then the speed (in m/s) of the bird is								
$(1) 20\sqrt{2}$ $(3) 40\left(\sqrt{2}-1\right)$ mathematical mathematica	$ \begin{array}{c} (2) \ 20 \left(\sqrt{3} - 1\right) \\ (4) \ 40 \left(\sqrt{3} - \sqrt{2}\right) \end{array} $ math on go \swarrow math on go							
Q76. If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n - 1) : n \in N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to								
///. n(1) Xongo ///. mathongo ///. (3) N	 (2) Ymathongo /// mathongo /// mathongo (4) Y - X 							
Q77. If A is a 3×3 non-singular matrix such that $AA' =$ the transpose of the matrix X.	$A'A$ and $B = A^{-1}A'$, then BB' equals, where X' denotes							
(1) B^{-1} mathematical mathematical (3) $I + B$	(2) $(B^{-1})'$ ongo /// mathongo /// mathongo (4) I							
Q78. If $\alpha, \beta \neq 0, f(n) = \alpha^n + \beta^n$ and $\begin{vmatrix} 3 & 1+f \\ 1+f(1) & 1+f \\ 1+f(2) & 1+f \end{vmatrix}$	$ \begin{aligned} & \frac{F(1)}{F(2)} & 1 + f(2) \\ & \frac{F(2)}{F(2)} & 1 + f(3) \\ & \frac{F(3)}{F(3)} & 1 + f(4) \end{aligned} = K(1 - \alpha)^2 (1 - \beta)^2 (\alpha - \beta)^2, \text{ then } K \text{ is } \end{aligned} $							
equal to (1) 1 math ongo (3) $\alpha\beta$ (3) $\alpha\beta$	(2) -1 athongo ///. mathongo ///. mathongo (4) $\frac{1}{\alpha\beta}$							
Q79. If g is the inverse of a function f and $f'(x) = \frac{1}{1+x^5}$, then $g'(x)$ is equal to							
(1) $\frac{1}{1+\{g(x)\}^5}$ (3) $1+x^5$ (3) $1+x^5$ (3) $1+x^5$	(2) $1 + \{g(x)\}_{0}^{5}$ /// mathongo /// mathongo (4) $5x^{4}$							
Q80. If $f \& g$ are differentiable functions in [0, 1] satisfying $c \in]0, 1[$	ng $f(0) = 2 = g(1), g(0) = 0 \& f(1) = 6$, then for some							
(1) $f'(c) = g'(c)$ mathematical mathematical (3) $2f'(c) = g'(c)$	(2) $f'(c) = 2g'(c)$ mathematical mathematical mathematical (4) $2f'(c) = 3g'(c)$							
Q81. If $x = -1$ and $x = 2$ are extreme points of $f(x) =$	$\alpha \log x + \beta x^2 + x$, then							
(1) $\alpha = 2, \beta = -\frac{1}{2}$ (3) $\alpha = -6, \beta = \frac{1}{2}$	(2) $\alpha = 2, \beta = \frac{1}{2}$ (4) $\alpha = -6, \beta = -\frac{1}{2}$							
Q82. The slope of the line touching both the parabolas y^2 (1) $\frac{1}{8}$	$x^2 = 4x$ and $x^2 = -32y$ is mothongo /// mothongo (2) $\frac{2}{3}$							
$(3) \frac{1}{2}$	(4) $\frac{3}{2}$							

Q83. The integral $\int (1+x-rac{1}{x})e^{x+rac{1}{x}}dx$, is equal to

Question Paper

JEE Main Previous Year Paper MathonGo

(1) $(x+1)e^{x+\frac{1}{x}} + c$ athongo (3) $(x-1)e^{x+\frac{1}{x}} + c$	(2) $-xe^{x+\frac{1}{x}}+c$ /// mathongo /// mathongo (4) $xe^{x+\frac{1}{x}}+c$					
Q84. The integral $\int_{0}^{\pi} \sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2}} dx$ equals						
(1) $4\sqrt{3} - 4$ (3) $\pi - 4$ (3) $\pi - 4$ (3) $\pi - 4$ (3) $\pi - 4$	(2) $4\sqrt{3} - 4 - \frac{\pi}{3}$ (2) $4\sqrt{3} - 4 - \frac{\pi}{3}$ (2) mathematical					
Q85. The area (in sq. unit) of the region described by $A =$	$=ig\{(x,\ y)\ :\ x^2+y^2\leq 1 \ ext{and} \ y^2\leq 1-xig\} ext{ is }$					
(1) $\frac{\pi}{2} - \frac{2}{3}$ (3) $\frac{\pi}{2} + \frac{4}{3}$ mathematical mathematimatical mathematical mathematical mathematical mathematical math	(2) $\frac{\pi}{2} + \frac{2}{3}$ (4) $\frac{\pi}{2} - \frac{4}{3}$ mathematical <i>III</i> ma					
Q86. Let the population of rabbits surviving at a time t be $\frac{dp(t)}{dt} = \frac{1}{2} \{ p(t) - 400 \}.$ If $p(0) = 100$, then $p(t)$ equations of the tensor of the tensor of the tensor of tensor o	e governed by the differential equation					
(1) $600 - 500 e^{\frac{t}{2}}$ mathematical (3) $400 - 300 e^{t/2}$	(2) $400 - 300 e^{\frac{-t}{2}}$ mathematical m					
Q87. If $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$ then λ is equal to the set of the	Imathongo Imathongo Imathongo equal to Imathongo Imathongo					
///. m(1) 00ngo ///. mathongo ///. mathongo	(2) 1 mathongo ///. mathongo ///. mathongo					
	(4) 3					
Q88. The image of the line $\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-4}{-5}$ in the plane (1) $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$ (3) $\frac{x+3}{3} = \frac{y-5}{1} = \frac{z-2}{-5}$	ne $2x - y + z + 3 = 0$ is the line (2) $\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z-2}{5}$ (4) $\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5}$					
Q89. The angle between the lines whose direction cosines	s satisfy the equations $l + m + n = 0$ and $l^2 = m^2 + n^2$ is					
(1) $\frac{\pi}{6}$	(2) $\frac{\pi}{2}$					
n (3). Bongo /// mathongo /// mathongo	(4) amathongo /// mathongo /// mathongo					
Q90. Let A and B be two events such that $P(\overline{A \cup B}) =$	$\frac{1}{6}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for					
the complement of the event A. Then the events A and B are						
(3) Mutually exclusive and independent.	(4) Equally likely but not independent.					

Question Paper

A	NSWER KE	YS	mathongo	14.	mathongo	77.	methologo	14.	mathongo	11.	mathongo
1. (1) _{nathon} 2. (3)///	3. (1)	11.	4. (3) nongo	5. (2)mathon 6. ((3) ///	7. (4)	11.	8. (3) hongo
9. (1) 10.	(1)	11. (1)		12. (3)	13. ((4) 14.	. (4)	15. (3)		16. (3)
17.	(1) athon 18.	(3)	19. (3)		20. (2) 000	21. ((3) athor 22.	(3)	23. (4)		24. (2) 0000
25.	(2) 26.	(4)	27. (2)		28. (3)	29. ((1) 30 .	. (2)	31. (2)		32. (1)
33.	(1) 34 .	(4)	35. (2)		36. (1)	37. ((2) 38.	. (4)	39. (2)		40. (1)
41.	(3) 42.	(3)	43. (1)		44. (1)	45. ((3) 46.	(2)	47. (1)		48. (4)
49.	(4) 50.	(3)	51. (2)		52. (2)	53. ((2) 54.	. (2)	55. (4)		56. (1)
57.	(3) athon 58 .	(4)	59. (1)		60. (1)ongo	61. ((3)nathon 62 .	. (2)%	63. (4)		64. (1) ongo
65.	(2) 66.	(2)	67. (2)		68. (4)	69. ((1) 70 .	. (2)	71. (1)		72. (2)
73.	(3) 74.	(4)	75. (2)		76. (2)	77. ((4) 78 .	. (1)	79. (2)		80. (2)
81.	(1) 82.	(3)	83. (4)		84. (2)	85. ((3) 86.	(3)	87. (2)		88. (3)
89.	(3) 90.	(1)									