Question Paper

JEE Main Previous Year Paper MathonGo

Q1. Let $[\in_0]$ denote the dimensional formula of the permittivity of vacuum. If M = mass, L = length, T = time and A = electric current, then : (1) $[\in_0] = [M^{-1} L^2 T^{-1} A^{-2}]$ (2) $[\in_0] = [M^{-1} L^2 T^{-1} A]$ (3) $[\in_0] = [M^{-1} L^{-3} T^2 A]$ (4) $[\in_0] = [M^{-1} L^{-3} T^4 A^2]$ Q2. A projectile is given an initial velocity of $(\hat{i} + 2\hat{j}) \text{ m s}^{-1}$, where \hat{i} is along the ground and \hat{j} is along the vertical upward. If $g = 10 \text{ m s}^{-2}$, the equation of its trajectory is : (2) $4y = 2x - 25x^2$ (1) $4y = 2x - 5x^2$ (3) $y = x - 5x^2$ (4) $y = 2x - 5x^2$ Q3. A uniform cylinder of length L and mass M having cross-sectional area A is suspended, with its length vertical, from a fixed point by a massless spring, such that it is half submerged in a liquid of density σ at equilibrium position. The extension x_0 of the spring when it is in equilibrium is : $(1) \frac{Mg}{k} \left(1 - \frac{LA\sigma}{2M}\right)$ $(3) \frac{Mg}{k} \left(1 + \frac{Mg}{M}\right)$ $(4) \frac{Mg}{k} \left(1 - \frac{LA\sigma}{M}\right)$ $(5) \frac{Mg}{k} \left(1 - \frac{LA\sigma}{M}\right)$ Q4. This question has Statement - I and Statement - II of the four choices given after the Statements, choose the one that best describes the two Statements. Statement - I: A point particle of mass m moving with speed ν collides with stationary point particle of mass M. If the maximum energy loss possible is given as $f(\frac{1}{2}m\nu^2)$ then $f=(\frac{m}{M+m})$. Statement - II: Maximum energy loss occurs when the particles get stuck together as a result of the collision. (1) Statement-I is true, Statement-II is false. (2) Statement-I is false, Statement-II is true. (4) Statement-I is true, Statement-II is true, (3) Statement-I is true, Statement-II is true, Statement-II is a correct explanation of Statement-II is not a correct explanation of Statement-I. Statement-I. Q5. A hoop of radius r and mass m rotating with an angular velocity ω_0 is placed on a rough horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases to slip? $(1) \frac{r\omega_0}{2}$ (2) $r\omega_0$ ngo ///. mathongo ///. mathongo (4). $\frac{r\omega_0}{3}$ hathongo ///. mathongo ///. mathongo (3) $\frac{r\omega_0}{4}$ Q6. What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R? $(1) \frac{\text{GmM}}{2\text{R}}$ $(3) \frac{5\text{GmM}}{6\text{R}}$ (2) $\frac{\text{GmM}}{3\text{R}}$ mathenge /// mathenge /// mathenge /// mathenge /// mathenge Q7. Assume that a drop of a liquid evaporates by a decrease in its surface energy so that its temperature remains unchanged. The minimum radius of the drop for this to be possible is. (The surface tension is T, the density of the liquid is ρ and L is its latent heat of vaporisation.) (2) $\frac{2T}{oL}$ nathongo ///. mathongo ///. mathongo (1) $\frac{T}{\rho L}$ (3) $\frac{\rho L}{T}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo (3) $\frac{\rho L}{T}$

JEE Main Previous Year Paper MathonGo

Question Paper

Q8. If a piece of metal is heated to temperature θ and then allowed to cool in a room which is at temperature θ_0 , the graph between the temperature T of the metal and time t will be closest to :

r(1)thongo	//. mathongo	///. mathongo	(2). mqthongo		
T mathon jo	w. mathongo		/// mathongo	mathongo	
math 0	77 -ma dian go				
/// matho	$t \rightarrow$		/// Instalation	$\frac{math}{t}$ \rightarrow	
(3) r(3) rthongo			(4) mathongo		
///. math T ngo	//. mathongo		Thathongo		
	/// nathongo		θ	<u>///</u> mathongo	
//. mathongo	//. mattongo	///. mathongo	//. mathongo	//. mathongo	
OI /// mathongo	$l \rightarrow l$ mathongo		//. mathongo	//. mathongo	
Q9. math Pgo	//. mathongo	//. mathongo			
	B mathongo	C 7 mathongo			
P		D ^{mathongo}			
11. mathango	///. mathongo	$V \to V$			
	//. mathongo	<i>wa</i> thongo			
The above P -	- V diagram represe	ents the thermodyna	mic cycle of an engi	ne, operating with a	n ideal mono-
atomic gas. Th	e amount of heat, e	xtracted from the so	ource in a single cycl	e, is: mathongo	
$(1) \left(\frac{-2}{2}\right) P_0 V_0$ $(3) P_0 V_0$			(2) $4P_0V_0$ (4) $(\frac{13}{2})P_0V_0$		
	mationgo	mathongo		inicitiongo	inditiongo
Q10. Two charges, $q_1 = -\frac{q}{2}$ is	each equal to q, are	x = -a and $x = -a$ is given by the set of the set o	d x = a on the x-axi en a small displacem	s. A particle of mass ent $(y \le z)$ along	m and charge
force acting d_0	on the particle is pro	portional to :		ent (j < cu) along	the y axis, the net
$(1)\frac{1}{y}$	///. mathongo	//. mathongo	(2) $-\frac{1}{y}$ athongo		
(3) -y			(4) y		

JEE Main Previous Year Paper MathonGo

Question Paper

Q16. The supply voltage to a room is 120 V. The resistance of the lead wires is 6 Ω . A 60 W bulb is already switched on. What is the decrease of voltage across the bulb, when a 240 W heater is switched on in parallel to the bulb? (1) 13.3 V (2) 10.4 V (4) 2 .9 V (3) zero V Q17. This question has Statement I and Statement II. Of the four choices given after the Statements, choose the one that best describes the two Statements. Statement - I : Higher the range, greater is the resistance of ammeter. Statement - II: To increase the range of ammeter, additional shunt needs to be used across it. (1) Statement-I is true, Statement-II is false. (2) Statement-I is false, Statement-II is true. (4) Statement-I is true, Statement-II is true, mothon of (3) Statement-I is true, Statement-II is true, Statement-II is the correct explanation of Statement-II is not the correct explanation of Statement-I. Statement-I. Q18. Two short bar magnets of length 1 cm each have magnetic moments 1 .20 A m² and 1 .00 A m² respectively. They are placed on a horizontal table parallel to each other with their N poles pointing towards the south. They have a common magnetic equator and are separated by a distance of 20.0 cm. The value of the resultant horizontal magnetic induction at the mid-point O of the line joining their centres is close to (Horizontal component of earth's magnetic induction is 3.6×10^{-5} Wb m⁻²) (2) 5.80 $\times 10^{-4}$ Wb m⁻² at honce (1) 3 .50 $\times 10^{-4}$ Wb m⁻² (4) 2 .56 $\times 10^{-4}$ Wb m⁻² (3) 3 .6 $\times 10^{-5}$ Wb m⁻² Q19. A metallic rod of length l is tied to a string of length 2l and made to rotate with angular speed ω on a horizontal table with one end of the string fixed. If there is a vertical magnetic field B in the region, the e.m.f. induced across the ends of the rod is: mathongo (2) $\frac{5B\omega l^2}{2}$ hongo /// mathongo /// mathongo (4) $\frac{3B\omega l^2}{2}$ (1) $\frac{4B\omega t}{2}$ $(3) \frac{2B\omega l^2}{2}$ Q20. A circular loop of radius 0.3 cm lies parallel to a much bigger circular loop of radius 20 cm. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm. If a current of 2.0 A flows through the smaller loop, then the flux linked with a bigger loop is: (1) 3 .3 $\times 10^{-11}$ weber (2) 6 .6 $\times 10^{-9}$ weber mathematical math (3) 9 .1 ×10⁻¹¹ weber honco Q21. The amplitude of a damped oscillator decreases to 0.9 times its original magnitude in 5s. In another 10s it will decrease to α times its original magnitude, where α equals : Join the Most Relevant Test Series for JEE Main with Most Detailed & Advanced Analysis here: https://links.mathongo.com/mWN

Question Paper

(3) 0.7 mathongo /// mathongo	(2) 0.6 athongo ///. mathongo ///. mathongo(4) 0.81
Q22. The magnetic field in a travelling electromagnetic v field strength is : (1) 9 V m ⁻¹	vave has a peak value of 20 nT. The peak value of electric (2) 12 V m ^{-1}
(3) 3 V m ⁻¹	(4) 6 V m ⁻¹
Q23. The graph between angle of deviation (δ) and angle	of incidence (i) for a triangular prism is represented by :
β mathematic β mathematic β mathematic β	$\begin{pmatrix} 2 \\ \delta \end{pmatrix}$ mathematical \bigwedge mathematik
mathingo mathingo mathingo	/// mathongo /// mathongo
///. mathologo ///. mathongo	///. mathongo i ///. mathongo ///. mathongo
$\frac{(3)}{\delta} \longrightarrow \frac{1}{\delta} \longrightarrow $	$ \begin{array}{c} (4) \\ \delta \end{array} \\ \end{array} m d thonse \\ \hline (1) \hline \hline ($
/// mathango /// mathongo /// mathongo	/// nathongo /// nathongo /// mathongo
/// mathologo /// inathongo /// mathongo	///. Pathongo i ///. mathongo ///. mathongo
Q24. Diameter of a plano - convex lens is 6 cm and thic material of lens is 2×10^8 m s ⁻¹ the focal length of	cness at the centre is 3 mm. If the speed of light in the ongo
Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2×10^8 m s ⁻¹ , the focal length of (1) 30 cm	concerns at the centre is 3 mm. If the speed of light in the first of the lens is: (2) 10 cm
Q24. Diameter of a plano - convex lens is 6 cm and thic material of lens is 2×10^8 m s ⁻¹ , the focal length of (1) 30 cm (3) 15 cm	An ess at the centre is 3 mm. If the speed of light in the order of the lens is: (2) 10 cm (4) 20 cm
 Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2 × 10⁸ m s⁻¹, the focal length of (1) 30 cm (3) 15 cm Q25. A beam of unpolarised light of intensity I₀ is passe which is oriented so that its principle plane makes a emergent light is: 	The speed of light in
 Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2 × 10⁸ m s⁻¹, the focal length of (1) 30 cm (3) 15 cm Q25. A beam of unpolarised light of intensity I₀ is passed which is oriented so that its principle plane makes a emergent light is: (1) I₀/4 (3) I₀ 	Exact set the centre is 3 mm. If the speed of light in the of the lens is: (2) 10 cm (4) 20 cm d through a polaroid A and then through another polaroid B in angle of 45° relative to that of A. The intensity of the (2) $\frac{I_0}{8}$ (4) $\frac{I_0}{9}$
 Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2 × 10⁸ m s⁻¹, the focal length of (1) 30 cm (3) 15 cm Q25. A beam of unpolarised light of intensity I₀ is passed which is oriented so that its principle plane makes a emergent light is: (1) I₀/4 (3) I₀ Q26. Two coherent point sources S₁ and S₂ are separate obtained on the screen will be 	coness at the centre is 3 mm. If the speed of light in the of the lens is: (2) 10 cm (4) 20 cm d through a polaroid A and then through another polaroid B in angle of 45° relative to that of A. The intensity of the (2) $\frac{I_0}{8}$ (4) $\frac{I_0}{2}$ d by a small distance d as shown in the figure. The fringes
 Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2 × 10⁸ m s⁻¹, the focal length of (1) 30 cm (3) 15 cm Q25. A beam of unpolarised light of intensity I₀ is passe which is oriented so that its principle plane makes a emergent light is: (1) I₀ (3) I₀ Q26. Two coherent point sources S₁ and S₂ are separate obtained on the screen will be 	the speed of light in the of the lens is: (2) 10 cm (4) 20 cm d through a polaroid A and then through another polaroid B in angle of 45° relative to that of A. The intensity of the (2) $\frac{I_0}{8}$ (4) $\frac{I_0}{2}$ d by a small distance d as shown in the figure. The fringes
Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2×10^8 m s ⁻¹ , the focal length of (1) 30 cm (3) 15 cm Q25. A beam of unpolarised light of intensity I_0 is passe which is oriented so that its principle plane makes a emergent light is: (1) $\frac{I_0}{4}$ (3) I_0 Q26. Two coherent point sources S_1 and S_2 are separate obtained on the screen will be $I_1 = \frac{1}{S_1 + S_2}$	the speed of light in the of the lens is: (2) 10 cm (4) 20 cm d through a polaroid A and then through another polaroid B in angle of 45° relative to that of A. The intensity of the (2) $\frac{I_0}{8}$ (4) $\frac{I_0}{2}$ d by a small distance d as shown in the figure. The fringes (4) $\frac{I_0}{2}$ (5) $\frac{I_0}{8}$ (6) $\frac{I_0}{8}$ (7) $\frac{I_0}{8}$ (9) $\frac{I_0}{2}$ (9) $\frac{I_0}{8}$ (9) $$
Q24. Diameter of a plano - convex lens is 6 cm and thick material of lens is 2×10^8 m s ⁻¹ , the focal length of (1) 30 cm (3) 15 cm Q25. A beam of unpolarised light of intensity I_0 is passe which is oriented so that its principle plane makes a emergent light is: (1) $\frac{I_0}{4}$ (3) I_0 Q26. Two coherent point sources S_1 and S_2 are separate obtained on the screen will be $I_1 = \frac{\epsilon d}{S_1 + S_2}$ Screen	coness at the centre is 3 mm. If the speed of light in the f the lens is: (2) 10 cm (4) 20 cm d through a polaroid A and then through another polaroid B in angle of 45° relative to that of A. The intensity of the (2) $\frac{I_0}{8}$ (4) $\frac{I_0}{2}$ d by a small distance d as shown in the figure. The fringes (4) $\frac{I_0}{2}$ (5) $\frac{I_0}{8}$ (6) $\frac{I_0}{8}$ (7) $\frac{I_0}{8}$ (9) $\frac{I_0}{2}$ (9) $\frac{I_0}{8}$ (9) $I_$

JEE Main 2013 (07 Apr) Question Paper

(1) semi-circles(3) points			(2) concentric circl(4) straight lines	es // mathongo					
Q27. The anode voltage of a photocell is kept fixed. The wavelength λ of the light falling on the cathode is									
gradually change	d. The plate cur	rrent I of the pho	otocell varies as follows	:					
(1) hongo			go (2) mathongo						
///. mathongp ///.	mathongo	//. mathon	go 📶 r I athongo						
/// mathongo ///	nathongo		go 📶 nhathonso	///. mathongo					
/// mathe	ma % ana→	//. mathon	go 📶 mathongo	mathongo					
//. mathongo //.			go ///. mathongo	$\frac{\lambda}{\mu}$ mathongo					
(3) //. mathongo ///.			go 🥢 mathongo						
mathong	muthongo		go 📶 🛉 athongo	//. mathongo					
11. mathongo	mathongo		go 🥂 mathongo	mathongo					
/// mathor	$\lambda \rightarrow$	<mark></mark> mathon	go /// r Ø ithongo	λ mathongo					
Q28. In a hydrogen lik	e atom electron	makes transitio	n from an energy level v	with quantum number	er n to another				
with quantum nu	mber $(n-1)$. I	f n $>>$ 1, the fr	equency of radiation em	litted is proportional	to:// mathongo				
(1) $\frac{1}{n^{3/2}}$			(2) $\frac{1}{n^3}$						
///. motrongo ///.			go (4) n ² nathongo						
Q29. A diode detector	is used to detec	ct an amplitude	modulated wave of 60%	6 modulation by us	sing a condenser of				
capacity 250 pic	o farad in para	allel with a load	l resistance of 100 kild	o ohm. Find the ma	aximum modulated				
frequency which	could be detect	ed by it.	(2) 5.91 $k H_{\pi}$						
(1) 5.51 MHZ (3) 10.62 MHz			(4) 10.62 kHz						
Q30. The I – V charac	cteristics of an I	LED is:							

JEE Main 2013 (07 Apr) Question Paper

Question Paper

JEE Main Previous Year Paper MathonGo

Q37. Which of the following represents the correct order	of increasing first ionization enthalpy for /// mothongo
(1) Ba < Ca < Se < S < Ar $(3) Ca < S < Ba < Se < Ar$	(2) $Ca < Ba < S < Se < Ar$ mathongo (4) $S < Se < Ca < Ba < Ar$
Q38. Stability of the species Li_2 , Li_2^- and Li_2^+ increase	es in the order of a mathenge mathenge
(1) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$	$(2) \operatorname{Li}_2^- < \operatorname{Li}_2 < \operatorname{Li}_2^+$
(3) $\operatorname{Li}_2 < \operatorname{Li}_2^+ < \operatorname{Li}_2^-$ though the methon of the second s	(4) $\operatorname{Li}_2^- < \operatorname{Li}_2^+ < \operatorname{Li}_2^{\prime\prime}$ mathongo $\prime\prime\prime$ mathongo
Q39. Which one of the following molecules is expected to $(1) O_2$	b exhibit paramagnetic behaviour? (2) O_2^{-2}
///. m ⁽³⁾ C ₂ go ///. mathongo ///. mathongo	(4) N _{2nathongo} ///. mathongo ///. mathongo
Q40. In which of the following pairs of molecules/ions, b	oth the species are not likely to exist?
(1) H_2^{2+} , He_2 (3) H_2^+ , He_2^{2-}	(2) H_2^- , He_2^{2+} (4) H_2^- , He_2^{2-} (4) H_2^- , He_2^{2-}
Q41. For gaseous state, if most probable speed is denoted	by C^* , average speed by \overline{C} and root mean square speed
by C, then for many molecules, what is the ratios of	these speeds?
$^{(1)}\mathrm{C}^{*}: \mathrm{\bar{C}}: \mathrm{C} = 1: 1.128: 1.225$	⁽²⁾ $C^* : \overline{C} : C = 1 : 1.225 : 1.128$
(3) $C^* : \overline{C} : C = 1.225 : 1.128 : 1$ at hongo	⁽⁴⁾ $C^*: \bar{C}: C = 1.128: 1.225: 1.1.225$ mathematical
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 ($R = 8.314$ J/mol K) ($ln7.5 = 2.01$)	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J O43. Consider the following reaction:	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J Q43. Consider the following reaction: $x MnO_4^- + y C_2O_4^{2-} + zH^+ \longrightarrow x Mn^{2+} + 2y C$ The values of x, y and z in the reaction are, respecti	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J O ₂ + $\frac{z}{2}$ H ₂ O vely:
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J Q43. Consider the following reaction: $x MnO_4^- + y C_2O_4^{2-} + zH^+ \longrightarrow x Mn^{2+} + 2y C$ The values of x, y and z in the reaction are, respecti (1) 2, 5 and 16 (3) 5.2 and 16	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J O ₂ + $\frac{z}{2}$ H ₂ O vely: (2) 5, 2 and 8 (4) 2, 5 and 8
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J Q43. Consider the following reaction: $x MnO_4^- + y C_2O_4^{2-} + zH^+ \longrightarrow x Mn^{2+} + 2y C$ The values of x, y and z in the reaction are, respecting (1) 2, 5 and 16 (3) 5, 2 and 16 Q44. A solution of (-)1 - chloro - 1 - phenylethane in amount of SbCl ₅ , due to the formation of :	is reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J O ₂ + $\frac{z}{2}$ H ₂ O vely: (2) 5, 2 and 8 (4) 2, 5 and 8 in toluene racemises slowly in the presence of a small
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J Q43. Consider the following reaction: $x MnO_4^- + y C_2O_4^{2-} + zH^+ \longrightarrow x Mn^{2+} + 2y C$ The values of x, y and z in the reaction are, respecting (1) 2, 5 and 16 (3) 5, 2 and 16 Q44. A solution of (-)1 - chloro - 1 - phenylethane in amount of SbCl ₅ , due to the formation of : (1) Carbocation (3) Carbanion	is reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J O ₂ + $\frac{z}{2}$ H ₂ O vely: (2) 5, 2 and 8 (4) 2, 5 and 8 in toluene racemises slowly in the presence of a small (2) Free radical (4) Carbene
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J Q43. Consider the following reaction: x MnO ₄ ⁻ + y C ₂ O ₄ ²⁻ + zH ⁺ \rightarrow x Mn ²⁺ + 2y C The values of x, y and z in the reaction are, respectin (1) 2, 5 and 16 (3) 5, 2 and 16 Q44. A solution of (-)1 - chloro - 1 - phenylethane in amount of SbCl ₅ , due to the formation of : (1) Carbocation (3) Carbanion	s reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208$ J, $w = +208$ J (4) $q = -208$ J, $w = -208$ J O ₂ + $\frac{z}{2}$ H ₂ O vely: (2) 5, 2 and 8 (4) 2, 5 and 8 in toluene racemises slowly in the presence of a small (2) Free radical (4) Carbene (7) mothod (7) mothod (7)
Q42. A piston filled with 0.04 mol of an ideal gas expand temperature of 37. 0°C. As it does so, it absorbs 208 (R = 8.314 J/mol K) (ln7.5 = 2.01) (1) q = -208 J, w = +208 J (3) q = +208 J, w = -208 J Q43. Consider the following reaction: x MnO ₄ ⁻ + y C ₂ O ₄ ²⁻ + zH ⁺ \rightarrow x Mn ²⁺ + 2y C The values of x, y and z in the reaction are, respecting (1) 2, 5 and 16 (3) 5, 2 and 16 Q44. A solution of (-)1 - chloro - 1 - phenylethane is amount of SbCl ₅ , due to the formation of : (1) Carbocation (3) Carbanion (3) Carbanion (4) mothered (4) mothered (4) mothered	is reversibly from 50.0 mL to 375 mL at a constant 3 J of heat. The values of q and w for the process will be (2) $q = +208 J$, $w = +208 J$ (4) $q = -208 J$, $w = -208 J$ (2) $p = \frac{z}{2}H_2O$ vely: (2) 5, 2 and 8 (4) 2, 5 and 8 (4) 2, 5 and 8 (4) 2, 5 and 8 (4) Carbene (2) Free radical (4) Carbene (4) Carbene (4

Join the Most Relevant Test Series for JEE Main with Most Detailed & Advanced Analysis here: https://links.mathongo.com/mWN

Question Paper

Q45. Arrange the following compounds in order of decre	asing acidity :ongo		
/// mathong	H // mathongo ///		
math noo in math noo in math noo ;	;	mathongo	
mather mather mather	mathor	mathongo	
(I) mathon ^{CH 3} (II) mathon ^{SH 3} (II) (II)	02 mathong OCH3 II) (IV)		
(1) $III > I > II > IV$ mathematical mathematical (1) $III > I > II > IV$ mathematical (1) $III > IV > I > III$	(2) $IV > III > I > II$ (4) $I > II > III > IV$		
Q46. The order of stability of the following carbocations:	11. mathongo 11.		
///. mathongo ///. mathongo ///. mathor	2 ^{///.} mathongo ///.		
$\begin{array}{c} \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	///. mathongo ///.		
///. mathongo I// mathongo II/// math	III. mathongo III.		
$\begin{array}{c} \text{III} \\ \text{mathongo} & \text{III} \\ (1) \text{ I} > \text{II} > \text{III} \\ \end{array} \text{ mathongo} & \text{III} \\ \text{mathongo} & \text{mathongo} \\ \end{array}$	(2) III > I > II (4) II > III > I		
047. The gas leaked from a storage tank of the Union Ca	rbide plant in Bhopal gas	tragedy was :	
(3) Methyl isocyanate	(2) Phosgene(4) Methylamine	mathongo	
Q48. Which of the following exists as covalent crystals in (1) Sulphur	n the solid state ? (2) Phosphorus		
(3) Iodine data mathongo data mathongo	(4) Silicon		
Q49. Four successive members of the first row of transition one of them is expected to have the highest $E^{o}_{M^{3+}/M}$	on elements are listed bel 2+ value?	ow with atomic	numbers. Which
(1) Fe (Z = 26) (3) Cr (Z = 24) (3) Cr (Z = 24)	(2) Co (Z = 27) (4) Mn (Z = 25)		
Q50. The rate of a reaction doubles when its temperature reaction will be:	changes from 300K to 3	310K. Activation	energy of such a
$(\mathrm{R}=8.314~\mathrm{JK}^{-1}~\mathrm{mol}^{-1}~~\mathrm{and}~~\log 2=0.301)$			

Question Paper

(1) 58.5 kJ mol ⁻¹ athongo ///. (3) 53.6 kJ mol ⁻¹	(2) 60.5 kJ mol^{-1} (4) 48.6 kJ mol^{-1} (4) 48.6 kJ mol^{-1}
051 The coagulating power of electrolytes having ions N	10^+ 10^{3+} and 100^{2+} for argenic sulphide sol increases in
the order	a, AI and Da for arsenic surplide sor increases in
(1) $Ba^{2+} < Na^+ < Al^{3+}$	(2) $Al^{3+} < Na^+ < Ba^{2+}$ mothongo /// mothongo
(1) $\Delta a^{(1)} < Ba^{2+} < Na^+$	(4) $Na^+ < Ba^{2+} < Al^{3+}$
///. mathongo ///. mathongo ///. mathongo	📶 mathongo 📶 mathongo 📶 mathongo
Q52. Which of the following is wrong statement?	
(1) Ozone is violet-black in solid state	(2) Ozone is diamagnetic gas
(3) ONCl and ONO ⁻ are isoelectronic	(4) O_3 molecule is bent
Q53. Which of the following arrangements does not repre-	esent the correct order of the property stated against it?
(1) $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: Stability in aqueous	$_{\rm S}$ (2) Sc < Ti < Cr < Mn : Number of oxidation states
///. matsolution ///. mathongo ///. mathongo	
(3) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: Paramagnetic	(4) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: Ionic size
///. matbehaviour //. mathongo ///. mathongo	
054 Given	
${ m E}^{ m o}_{{ m Cr}^{3+}/{ m Cr}} = -0.74~{ m V};~{ m E}^{ m o}_{{ m MnO}_4^-/{ m Mn}^{2+}} = 1.51~{ m V}$	
${ m E}^{ m o}_{{ m Cr}_2{ m O}^{2^-}/{ m Cr}^{3+}}=1.33~{ m V};~~{ m E}^{ m o}_{{ m Cl}_2 { m Cl}^-}=1.36~{ m V}$	
Based on the data given above, strongest oxidising a	igent will be:
(1) Mn^{2+}	(2) MnO_4^-
(3) Cl ⁻	(4) Cr^{3+}
055 Which of the following complex species is not expe	ated to exhibit ontical isomerism?
(1) $[C_0(NH_a), C_{la}]$	(2) $[Co(en)(NH_a), Cl_a]^+$
(1) $[Co(en)_3]^{3+}$	(2) $[Co(en)_{0}Cl_{2}]^{+}$
$(5) [00(01)_3]$	
Q56. An unknown alcohol is treated with the "Lucas reag	ent" to determine whether the alcohol is primary,
secondary or tertiary. Which alcohol reacts fastest an	nd by what mechanism:
(1) Secondary alcohol by S_N^2	(2) Tertiary alcohol by S_N^2
(3) Secondary alcohol by S_N^{1}	(4) Tertiary alcohol by $S_N 1$
Q57. Compound (A), C_8H_9 Cl, gives a white precipitate v	when warmed with alcoholic AgNO _{3.} Oxidation of (A)
gives an acid (B), $C_8H_6O_4$. (B) easily forms anhydr	ide on heating. Identify the compound (A).

JEE Main 2013 (07 Apr) Question Paper

/// n(1)hongo CH2Cl hongo /// mathongo	(2) mathongo CH2Clongo /// mathongo
/// mathongo /// mathongo	/// mathongo /// mathongo
mathana mathango	/// mathongo CH_3 athongo /// mathongo
/// mathongo /// mathongo /// mathongo	
///. mathongo \dot{CH}_{3} nathongo ///. mathongo	
mathongo CH ₂ Cl // mathongo	$^{(4)}$ mathenge $//C_2H_5$ mathenge
mathengo mathongo	/// mathongo
/// mathongo /// mathongo /// mathongo	/// mathengo //Clathongo /// mathongo
///. mathongo ///. mathongo ///. mathongo	
Q58. An organic compound A upon reacting with NH_3 gi	ves B. On heating, B gives C. C in presence of KOH reacts
with Br ₂ to give CH ₃ CH ₂ NH ₂ . A is :	///. mathongo ///. mathongo ///. mathongo
$\begin{array}{c} (1) \\ \text{math} CH_3 - CH - COOH \\ \end{array} \qquad \text{mathongo}$	mathongo /// mathongo /// mathongo
$\begin{array}{c} (1) \\ \text{math} CH_3 - CH - COOH \\ \\ CH_3 \end{array}$	(2) CH ₃ CH ₂ COOH mathongo ///. mathongo ///. mathongo
(1) $CH_3 - CH - COOH$ CH_3 (3) CH_3COOH	(4) CH ₃ CH ₂ CH ₂ COOH
(1) $CH_3 - CH - COOH$ CH_3 (3) CH_3COOH Q59. A compound with molecular mass 180 is acylated w	 (2) CH₃CH₂COOH (4) CH₃CH₂CH₂COOH with CH₃ COCl to get a compound with molecular mass
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per molecular 	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass excule of the former compound is
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 	 (2) CH₃CH₂COOH (4) CH₃CH₂CH₂COOH (4) CH₃CH₂CH₂COOH with CH₃ COCl to get a compound with molecular mass ecule of the former compound is (2) 6
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass excute of the former compound is (2) 6 (4) 5
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt 	 (2) CH₃CH₂COOH (4) CH₃CH₂CH₂COOH with CH₃ COCl to get a compound with molecular mass excule of the former compound is (2) 6 (4) 5 (4) 5 (5) 100 100 100 100 100 100 100 100 100 10
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP 	 (2) CH₃CH₂COOH (4) CH₃CH₂CH₂COOH with CH₃ COCl to get a compound with molecular mass excule of the former compound is (2) 6 (4) 5 (4) 5 (5) 100 100 100 100 100 100 100 100 100 10
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP 	 (2) CH₃CH₂COOH (4) CH₃CH₂CH₂COOH with CH₃ COCl to get a compound with molecular mass ecule of the former compound is (2) 6 (4) 5 nesis involves (2) 6 molecules of ATP (4) 10 molecules of ATP
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated v 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP O61. The real number k for which the equation, 2x³ + 3c 	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass ecule of the former compound is (2) 6 (4) 5 mesis involves (2) 6 molecules of ATP (4) 10 molecules of ATP (4) 10 molecules of ATP
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP Q61. The real number k for which the equation, 2x³ + 3a (1) lies between -1 and 0. 	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass ecule of the former compound is (2) 6 (4) 5 nesis involves (2) 6 molecules of ATP (4) 10 molecules of ATP z + k = 0 has two distinct real roots in [0, 1] belongs to (2) does not exist.
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP (3) 18 molecules of ATP Q61. The real number k for which the equation, 2x³ + 3a (1) lies between -1 and 0. (3) lies between 1 and 2. 	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass excute of the former compound is (2) 6 (4) 5 (4) 5 (2) 6 molecules of ATP (4) 10 molecules of ATP (5) $c + k = 0$ has two distinct real roots in [0, 1] belongs to (2) does not exist. (4) lies between 2 and 3.
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated v 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP Q61. The real number k for which the equation, 2x³ + 3x (1) lies between -1 and 0. (3) lies between 1 and 2. 	 (2) CH₃CH₂COOH (4) CH₃CH₂CH₂COOH with CH₃ COCl to get a compound with molecular mass equile of the former compound is (2) 6 (4) 5 (4) 5 (5) 6 (6) 7 (7) 6 (8) 7 (9) 6 (9) 6 (10) molecules of ATP (10) molecules of ATP (2) does not exist. (3) 10 exists (4) lies between 2 and 3.
 (1) CH₃ - CH - COOH CH₃ (3) CH₃COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP Q61. The real number k for which the equation, 2x³ + 3x (1) lies between -1 and 0. (3) lies between 1 and 2. Q62. If the equations x² + 2x + 3 = 0 and ax² + bx + c (1) 1 : 3 : 2 	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass excule of the former compound is (2) 6 (4) 5 (2) 6 molecules of ATP (4) 10 molecules of ATP (4) 10 molecules of ATP (5) $c + k = 0$ has two distinct real roots in [0, 1] belongs to (2) does not exist. (4) lies between 2 and 3. = 0, $a, b, c \in R$, have a common root, then $a : b : c$ is: (2) $3 : 1 : 2$
(1) $CH_3 - CH - COOH$ CH_3 (3) CH_3COOH Q59. A compound with molecular mass 180 is acylated w 390. The number of amino groups presents per mole (1) 4 (3) 2 Q60. Synthesis of each molecule of glucose in photosynt (1) 8 molecules of ATP (3) 18 molecules of ATP Q61. The real number k for which the equation, $2x^3 + 3x$ (1) lies between -1 and 0. (3) lies between 1 and 2. Q62. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c$ (1) $1: 3: 2$ (3) $1: 2: 3$	(2) CH_3CH_2COOH (4) $CH_3CH_2CH_2COOH$ with CH_3COCl to get a compound with molecular mass recule of the former compound is (2) 6 (4) 5 nesis involves (2) 6 molecules of ATP (4) 10 molecules of ATP (4) 10 molecules of ATP (5) does not exist. (4) lies between 2 and 3. = 0, $a, b, c \in R$, have a common root, then $a : b : c$ is: (2) $3 : 1 : 2$ (4) $3 : 2 : 1$

Question Paper

Q63. If z is a complex number of unit modulus and argument θ , then arg $\left(\frac{1+z}{1+z}\right)$ can be equal to (given $z \neq -1$) (1) θ (3) $-\theta$ we mathematical and the set of the se Q64. Let T_n be the number of all possible triangles formed by joining vertices of an *n*-sided regular polygon. If $T_{n+1} - T_n = 10$, then the value of n is :
 ///.
 mathongo
 (2) 8 (4) 7
 mathongo
 ///.
 mathongo
 (1) 10(3)5Q65. If x, y, z are positive numbers in A. P. and $\tan^{-1} x$, $\tan^{-1} y$ and $\tan^{-1} z$ are also in A. P., then which of the following is correct. (1) 6x = 3y = 2z (2) 6x = 4y = 3z (3) x = y = z (4) 2x = 3y = 6z (4) 2x = 3y = 6zQ66. The sum of first 20 terms of the sequence 0.7, 0.77, 0.777,, is : // mothongo $(1) \frac{7}{81} (179 + 10^{-20})$ $(2) \frac{7}{9} (99 + 10^{-20})$ $(3) \frac{7}{81} (179 - 10^{-20})$ $(4) \frac{7}{9} (99 - 10^{-20})$ Q67. The term independent of x in the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is mothongo (1) 210(2) 310(4) 120 athongo /// mathongo /// mathongo n⁽³⁾ 4_{ongo} /// mathongo /// mathongo **Q68.** The expression $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A}$ can be written as : (1) $\tan A + \cot A$ (2) secA + cosecA /// mathongo /// mathongo (1) $\tan A + \cot A$ (4) secAcosecA + 1(3) sinAcosA + 1Q69. A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching X-axis, the equation of the reflected ray is (1) $y = \sqrt{3}x - \sqrt{3}$ $(2) \sqrt{3}y = x - 1$ mathongo 📶 mathongo (4) $\sqrt{3}y = x - \sqrt{3}$ (3) $y = x + \sqrt{3}$ **Q70.** The x-coordinate of the incentre of the triangle that has the coordinates of midpoints of its sides as a thoragonal terms of the triangle that has the coordinates of midpoints of its sides as a thoragonal terms of the triangle that has the coordinates of midpoints of its sides as a thoragonal terms of the triangle that has the coordinates of midpoints of its sides as a thoragonal terms of the triangle that has the coordinates of midpoints of its sides as a thoragonal terms of terms of the triangle terms of the terms of (0,1), (1,1) and (1,0) is mathongo mathongo (2) $1 - \sqrt{2}$ ongo mathongo mathongo (4) $2 - \sqrt{2}$ (1) $1 + \sqrt{2}$ (3) $2 + \sqrt{2}$ Q71. The circle passing through (1, -2) and touching the axis of x at (3, 0) also passes through the point (1)(5,-2)(2)(-2, 5)(3)(-5, 2) // mathematical mathematical (4)(2, -5) ngo // mathematical mathemati Q72. Given : A circle, $2x^2 + 2y^2 = 5$ and a parabola, $y^2 = 4\sqrt{5}x$. Statement - I : An equation of a common tangent to these curves is $y = x + \sqrt{5}$. **Statement - II :** If the line, $y = mx + \frac{\sqrt{5}}{m} (m \neq 0)$ is their common tangent, then m satisfies $m^4 - 3m^2 + 2 = 0.$

Question Paper

 (1) Statement - I is true; Statement - II is false. (3) Statement - I is true; Statement - II is true; Statement - II is a correct explanation for 	 (2) Statement - I is false; Statement - II is true. at hongo (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for
statement - I.	statement - I.
Q73. The equation of the circle passing through the foci of (1) $x^2 + y^2 - 6y - 5 = 0$ (3) $x^2 + y^2 - 6y - 7 = 0$	of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at (0, 3) is (2) $x^2 + y^2 - 6y + 5 = 0$ (4) $x^2 + y^2 - 6y + 7 = 0$
Q74. The value of $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x \tan 4x}$ is equal to (1) 1	(2) 2 (4) 1 mathongo
$(3) - \overline{4}$ go (4) mathengo (4) mathengo	(4) ¹ / ₂ mathongo /// mathongo /// mathongo
Q75. Consider : Statement - I : $(p \land \neg q) \land (\neg p \land q)$ is a fallacy. Statement - II : $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ is a tautology	///. mathongo ///. mathongo ///. mathongo y.
(1) Statement - I is true; statement - II is false.	(2) Statement - I is false; Statement -II is true. Othor go
(3) Statement - I true; Statement -II is true;	(4) Statement - I is true; Statement - II is true;
Statement - II is a correct explanation for ongo Statement - I.	Statement - II is not a correct explanation for thomgo Statement - I.
Q76. All the students of a class performed poorly in Math	ematics. The teacher decided to give grace marks of 10 to
each of the students. Which of the following statistic	cal measures will not change even after the grace marks
were given ?	
(1) mode	(2) variance
(3) mean (3)	(4) median ongo /// mathongo /// mathongo
Q77. <i>ABCD</i> is a trapezium such that <i>AB</i> and <i>CD</i> are pa then <i>AB</i> is equal to	rallel and $BC \perp CD$. If $\angle ADB = \theta$, $BC = p$ and $CD = q$
(1) $\frac{p^2 + q^2}{1 + q^2}$	(2) $(p^2+q^2)\sin\theta$
$(1) \frac{p^2 \cos \theta + q^2 \sin \theta}{p \cos \theta + q \sin \theta}$ $(3) \frac{(p^2 + q^2) \sin \theta}{p \cos \theta + q \sin \theta}$	(4) $\frac{p^{2}+q^{2}\cos\theta}{p\cos\theta+q\sin\theta}$ mathematical mathematica
Q78. Let A and B be two sets containing 2 elements and	4 elements respectively. The number of subsets of $A imes B$
having 3 or more elements is :	
mathongo mathongo mathongo	(2) 211 athongo /// mathongo /// mathongo
(3) 256	(4) 220
Q79. $\begin{bmatrix} 1 & \alpha & 3 \\ 1 & 2 & 2 \end{bmatrix}$ is the adjoint of a 2 × 2 metric.	III mathongo III mathongo III mathongo
$\prod P = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a 3 × 3 matrix P	A and $ A = 4$, then α is equal to mathematical mathe
(1) 5	(2) 0
(1) 5 (1) 1 (3) 4 ongo (11) mathongo (11) mathongo	(4) 11 hathongo /// mathongo /// mathongo
Q80. The number of values of k, for which the system of $(k+1)x + 8y = 4k$	equations : mathongo ///. mathongo ///. mathongo

Question Paper

kx + (k+3)y = 3k - 1 mathematical mathmatical mathematical mathematical mathematical mathem	/// mathongo /// mathongo (2) 3 3 (4) 1 /// mathongo
Q81. If $y = \sec(\tan^{-1} x)$, then $\frac{dy}{dx}$ at $x = 1$ is equal to (1) 1 (3) $\frac{1}{\sqrt{2}}$ methodogo (1) methodogo (1)	(4) 1 (4) 1 (2) $\sqrt{2}$ (4) $\frac{1}{2}$ mathematical mat
Q82. The intercepts on the x -axis made by tangents to the	e curve, $y = \int\limits_{-\infty}^{x} \lvert t vert dt, \; x \in R,$ which are parallel to the line
y = 2x, are equal to (1) ± 3 (3) ± 1	0 (2) ± 4 athongo /// mathongo /// mathongo (4) ± 2
Q83. If $\int f(x)dx = \psi(x)$, then $\int x^5 f(x^3)dx$, is equal to	/// mathongo /// mathongo /// mathongo
$ \begin{array}{c} (1) \ \frac{1}{3} x^{3} \psi \left(x^{3}\right) - \int x^{2} \psi \left(x^{3}\right) dx + c \\ (3) \ \frac{1}{3} \left[x^{3} \psi \left(x^{3}\right) - \int x^{2} \psi \left(x^{3}\right) dx \right] + c \end{array} $	$egin{aligned} &(2) \; rac{1}{3} \left[x^3 \psi \left(x^3 ight) - \int x^3 \psi \left(x^3 ight) dx ight] + c \ &(4) \; rac{1}{3} x^3 \psi \left(x^3 ight) - 3 \int x^3 \psi \left(x^3 ight) dx + c \end{aligned}$
Q84. Statement - I : The value of the integral $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}}$	$\frac{1}{x}$ is equal to $\frac{\pi}{6}$.
Statement - II : $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx.$	
a a	
 a a (1) Statement - I is true; Statement - II is false. (3) Statement - I true; Statement - II is true; Statement - II is a correct explanation for Statement - I. 	 (2) Statement - I is false; Statement - II is true. (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for Statement - I.
 a a (1) Statement - I is true; Statement - II is false. (3) Statement - I true; Statement - II is true; Statement - II is a correct explanation for Statement - I. Q85. The area (in square units) bounded by the curve 	 (2) Statement - I is false; Statement - II is true. (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for Statement - I. es y=√x, 2y - x + 3 = 0, X-axis and lying in the first
 a a (1) Statement - I is true; Statement - II is false. (3) Statement - I true; Statement - II is true; Statement - II is a correct explanation for Statement - I. Q85. The area (in square units) bounded by the curve quadrant is (1) 18 sq. units (3) 9 sq. units 	 (2) Statement - I is false; Statement - II is true. (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for Statement - I. es y=√x, 2y - x + 3 = 0, X-axis and lying in the first (2) ²⁷/₄ sq. units (4) 36 sq. units
(1) Statement - I is true; Statement - II is false. (3) Statement - I true; Statement - II is true; Statement - II is a correct explanation for Statement - I. Q85. The area (in square units) bounded by the curve quadrant is (1) 18 sq. units (3) 9 sq. units Q86. At present, a firm is manufacturing 2000 items. It is additional number of workers x is given by $\frac{dP}{dx} = 1$ new level of production of items is (1) 3500 (3) 2500	 (2) Statement - I is false; Statement - II is true. (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for Statement - I. es y=√x, 2y - x + 3 = 0, X-axis and lying in the first (2) ²⁷/₄ sq. units (4) 36 sq. units estimated that the rate of change of production P w.r.t. 00 - 12√x. If the firm employs 25 more workers, then the (2) 4500 (4) 3000
(1) Statement - I is true; Statement - II is false. (3) Statement - I true; Statement - II is true; Statement - II is a correct explanation for Statement - I. Q85. The area (in square units) bounded by the curve quadrant is (1) 18 sq. units (3) 9 sq. units Q86. At present, a firm is manufacturing 2000 items. It is additional number of workers x is given by $\frac{dP}{dx} = 1$ new level of production of items is (1) 3500 (3) 2500 Q87. If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ median through A is:	 (2) Statement - I is false; Statement - II is true. (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for Statement - I. es y=√x, 2y - x + 3 = 0, X-axis and lying in the first (2) ²⁷/₄ sq. units (4) 36 sq. units estimated that the rate of change of production P w.r.t. 00 - 12√x. If the firm employs 25 more workers, then the (2) 4500 (4) 3000 are the sides of a triangle ABC, then the length of the
(1) Statement - I is true; Statement - II is false. (3) Statement - I true; Statement - II is true; Statement - II is a correct explanation for Statement - I. Q85. The area (in square units) bounded by the curve quadrant is (1) 18 sq. units (3) 9 sq. units Q86. At present, a firm is manufacturing 2000 items. It is additional number of workers x is given by $\frac{dP}{dx} = 1$ new level of production of items is (1) 3500 (3) 2500 Q87. If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ median through A is: (1) $\sqrt{33}$ (3) $\sqrt{18}$	 (2) Statement - I is false; Statement - II is true. (4) Statement - I is true; Statement - II is true; Statement - II is not a correct explanation for Statement - I. ess y=√x, 2y - x + 3 = 0, X-axis and lying in the first (2) ²⁷/₄ sq. units (4) 36 sq. units estimated that the rate of change of production P w.r.t. 00 - 12√x. If the firm employs 25 more workers, then the (2) 4500 (4) 3000 (4) 3000 (4) 3000 (5) 4500 (4) √72

Question Paper

	(1) exactly t(3) any value	wo va e.	alues. hongo			(2) ((4) (exactly three va exactly one valu	luës. 1e.			
Q8	9. Distance bet	ween	ı two parallel pl	anes	2x + y + 2z =	8 an	d $4x + 2y + 4z$	+5	= 0 is		
	(1) $\frac{7}{2}$ (3) $\frac{3}{2}$					(2) (4)	<u>9</u> 5 5 2 mathongo				
Q9	0. A multiple c	hoice	e examination h	as 5 o	questions. Each	que	stion has three a	ltern	ative answers of	out of	which
	(1) $\frac{11}{3^5}$ (3) $\frac{17}{3^5}$	///.	mathongo	<i>///</i> .	mathongo	(2) (4)	$\frac{10}{3^{5}}$	///.	mathongo	///.	mathongo

Question Paper

A	NSWER KE	EYS	mathongo	14.	mailhon go	74.	matheng	0 ///.	methion go	14.	methor go
1. (4	4)nathon 2.	(4)///	3. (1)	11.	4. (2) _{nongo}	5. (1)mathon6	. (3) ///	7. (2)	111.	8.(1) hongo
9. (4	4) 10	. (3)	11. (1)		12. (4)	13. ((2) 1	4. (1)	15. (4)		16. (2)
17.	(2) athon 18	. (4)	19. (2)		20. (3)	21. ((1)1athon 2	2. (4) ^{//}	23. (1)		24. (1) ongo
25.	(1) 26	. (2)	27. (2)		28. (2)	29. ((4) 3	0. (3)	31. (3)		32. (2)
33.	(4) 34	. (2)	35. (3)		36. (4)	37. ((1) 3	8. (4)	39. (1)		40. (1)
41.	(1) 42	. (3)	43. (1)		44. (1)	45. ((1) 4	6. (2)	47. (3)		48. (4)
49.	(2) 50	. (3)	51. (4)		52. (3)	53. ((3) 5	4. (2)	55. (1)		56. (4)
57.	(2) athon 58	. (2)	mat 59. (4)		60.(3)ongo	61. ((2)nathon6	2. (3)%	63. (1)		64. (3) ongo
65.	(3) 66	.(1)	67. (1)		68. (4)	69. ((4) 7	0. (4)	71. (1)		72. (4)
73.	(3) 74	. (2)	75. (4)		76. (2)	77. ((3) 7	8. (1)	79. (4)		80. (4)
81.	(3) 82	. (3)	83. (1)		84. (2)	85. ((3) 8	6. (1)	87. (1)		88. (1)
89.	(1) 90	.(1)									